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1 INTRODUCTION

Computability is perhaps the most significant and distinctive notion modern logic
has introduced; in the guise of decidability and effective calculability it has a
venerable history within philosophy and mathematics. Now it is also the basic
theoretical concept for computer science, artificial intelligence and cognitive sci-
ence. This essay discusses, at its heart, methodological issues that are central
to any mathematical theory that is to reflect parts of our physical or intellec-
tual experience. The discussion is grounded in historical developments that are
deeply intertwined with meta-mathematical work in the foundations of mathemat-
ics. How is that possible, the reader might ask, when the essay is concerned solely
with computability? This introduction begins to give an answer by first describ-
ing the context of foundational investigations in logic and mathematics and then
sketching the main lines of the systematic presentation.

1.1 Foundational contexts

In the second half of the 19th century the issues of decidability and effective calcu-
lability rose to the fore in discussions concerning the nature of mathematics. The
divisive character of these discussions is reflected in the tensions between Dedekind
and Kronecker, each holding broad methodological views that affected deeply their
scientific practice. Dedekind contributed perhaps most to the radical transforma-
tion that led to modern mathematics: he introduced abstract axiomatizations in
parts of the subject (e.g., algebraic number theory) and in the foundations for
arithmetic and analysis. Kronecker is well known for opposing that high level
of structuralist abstraction and insisting, instead, on the decidability of notions
and the effective construction of mathematical objects from the natural numbers.
Kronecker’s concerns were of a traditional sort and were recognized as perfectly
legitimate by Hilbert and others, as long as they were positively directed towards
the effective solution of mathematical problems and not negatively used to restrict
the free creations of the mathematical mind.

At the turn of the 20th century, these structuralist tendencies found an impor-
tant expression in Hilbert’s book Grundlagen der Geometrie and in his essay Über
den Zahlbegriff. Hilbert was concerned, as Dedekind had been, with the consis-
tency of the abstract notions and tried to address the issue also within a broad set
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theoretic/logicist framework. The framework could have already been sharpened
at that point by adopting the contemporaneous development of Frege’s Begriffs-
schrift, but that was not done until the late 1910s, when Russell and Whitehead’s
work had been absorbed in the Hilbert School. This rather circuitous development
is apparent from Hilbert and Bernays’ lectures [1917/18] and the many founda-
tional lectures Hilbert gave between 1900 and the summer semester of 1917. Apart
from using a version of Principia Mathematica as the frame for formalizing math-
ematics in a direct way, Hilbert and Bernays pursued a dramatically different
approach with a sharp focus on meta-mathematical questions like the semantic
completeness of logical calculi and the syntactic consistency of mathematical the-
ories.

In his Habilitationsschrift of 1918, Bernays established the semantic complete-
ness for the sentential logic of Principia Mathematica and presented a system of
provably independent axioms. The completeness result turned the truth-table test
for validity (or logical truth) into an effective criterion for provability in the logical
calculus. This latter problem has a long and distinguished history in philosophy
and logic, and its pre-history reaches back at least to Leibniz. I am alluding of
course to the decision problem (“Entscheidungsproblem”). Its classical formula-
tion for first-order logic is found in Hilbert and Ackermann’s book Grundzüge der
theoretischen Logik. This problem was viewed as the main problem of mathemat-
ical logic and begged for a rigorous definition of mechanical procedure or finite
decision procedure.

How intricately the “Entscheidungsproblem” is connected with broad perspec-
tives on the nature of mathematics is brought out by an amusingly illogical argu-
ment in von Neumann’s essay Zur Hilbertschen Beweistheorie from 1927:

. . . it appears that there is no way of finding the general criterion
for deciding whether or not a well-formed formula a is provable. (We
cannot at the moment establish this. Indeed, we have no clue as to how
such a proof of undecidability would go.) . . . the undecidability is even
a conditio sine qua non for the contemporary practice of mathematics,
using as it does heuristic methods, to make any sense. The very day
on which the undecidability does not obtain any more, mathematics
as we now understand it would cease to exist; it would be replaced
by an absolutely mechanical prescription (eine absolut mechanische
Vorschrift) by means of which anyone could decide the provability or
unprovability of any given sentence.

Thus we have to take the position: it is generally undecidable, whether
a given well-formed formula is provable or not.

If the underlying conceptual problem had been attacked directly, then something
like Post’s unpublished investigations from the 1920s would have been carried out
in Göttingen. A different and indirect approach evolved instead, whose origins can
be traced back to the use of calculable number theoretic functions in finitist con-
sistency proofs for parts of arithmetic. Here we find the most concrete beginning
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of the history of modern computability with close ties to earlier mathematical and
later logical developments.

There is a second sense in which “foundational context” can be taken, not as
referring to work in the foundations of mathematics, but directly in modern logic
and cognitive science. Without a deeper understanding of the nature of calculation
and underlying processes, neither the scope of undecidability and incompleteness
results nor the significance of computational models in cognitive science can be
explored in their proper generality. The claim for logic is almost trivial and implies
the claim for cognitive science. After all, the relevant logical notions have been
used when striving to create artificial intelligence or to model mental processes in
humans. These foundational problems come strikingly to the fore in arguments for
Church’s or Turing’s Thesis, asserting that an informal notion of effective calcu-
lability is captured fully by a particular precise mathematical concept. Church’s
Thesis, for example, claims in its original form that the effectively calculable num-
ber theoretic functions are exactly those functions whose values are computable
in Gödel’s equational calculus, i.e., the general recursive functions.

There is general agreement that Turing gave the most convincing analysis of
effective calculability in his 1936 paper On computable numbers — with an appli-
cation to the Entscheidungsproblem. It is Turing’s distinctive philosophical con-
tribution that he brought the computing agent into the center of the analysis and
that was for Turing a human being, proceeding mechanically.1 Turing’s student
Gandy followed in his [1980] the outline of Turing’s work in his analysis of ma-
chine computability. Their work is not only closely examined in this essay, but
also thoroughly recast. In the end, the detailed conceptual analysis presented be-
low yields rigorous characterizations that dispense with theses, reveal human and
machine computability as axiomatically given mathematical concepts and allow
their systematic reduction to Turing computability.

1.2 Overview

The core of section 2 is devoted to decidability and calculability. Dedekind intro-
duced in his essay Was sind und was sollen die Zahlen? the general concept of
a “(primitive) recursive” function and proved that these functions can be made
explicit in his logicist framework. Beginning in 1921, these obviously calculable
functions were used prominently in Hilbert’s work on the foundations of math-
ematics, i.e., in the particular way he conceived of finitist mathematics and its
role in consistency proofs. Hilbert’s student Ackermann discovered already be-
fore 1925 a non-primitive recursive function that was nevertheless calculable. In
1931, Herbrand, working on Hilbert’s consistency problem, gave a very general
and open-ended characterization of “finitistically calculable number-theoretic func-
tions” that included also the Ackermann function. This section emphasizes the

1The Shorter Oxford English Dictionary makes perfectly clear that mechanical, when applied
to a person or action, means “performing or performed without thought; lacking spontaneity or
originality; machine-like; automatic, routine.”
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broader intellectual context and points to the rather informal and epistemologi-
cally motivated demand that, in the development of logic and mathematics, certain
notions (for example, proof) should be decidable by humans and others should not
(for example, theorem). The crucial point is that the core concepts were deeply
intertwined with mathematical practice and logical tradition before they came to-
gether in Hilbert’s consistency program or, more generally, in meta-mathematics.

In section 3, entitled Recursiveness and Church’s Thesis, we see that Herbrand’s
broad characterization was used in Gödel’s 1933 paper reducing classical to intu-
itionist arithmetic. It also inspired Gödel to give a definition of “general recursive
functions” in his 1934 Princeton Lectures. Gödel was motivated by the need for a
rigorous and adequate notion of “formal theory” so that a general formulation of
his incompleteness theorems could be given. Church, Kleene and Rosser investi-
gated Gödel’s notion that served subsequently as the rigorous concept in Church’s
first published formulation of his thesis in [Church, 1935]. Various arguments in
support of the thesis, given by Church, Gödel and others, are considered in detail
and judged to be inadequate. They all run up against the same stumbling block of
having to characterize elementary calculation steps rigorously and without circles.
That difficulty is brought out in a conceptually and methodologically clarifying
way by the analysis of “reckonable function” (“regelrecht auswertbare Funktion”)
given in Hilbert and Bernays’ 1939 book.

Section 4 takes up matters where they were left off in the third section, but pro-
ceeds in a quite different direction: it returns to the original task of characterizing
mechanical procedures and focuses on computations and combinatory processes.
It starts out with a look at Post’s brief 1936 paper, in which a human worker
operates in a “symbol space” and carries out very simple operations. Post hy-
pothesized that the operations of such a worker can effect all mechanical or, in his
terminology, combinatory processes. This hypothesis is viewed as being in need
of continual verification. It is remarkable that Turing’s model of computation,
developed independently in the same year, is “identical”. However, the contrast
in methodological approach is equally, if not more, remarkable. Turing took the
calculations of human computers or “computors” as a starting-point of a detailed
analysis and reduced them, appealing crucially to the agents’ sensory limitations,
to processes that can be carried out by Turing machines. The restrictive features
can be formulated as boundedness and locality conditions. Following Turing’s ap-
proach, Gandy investigated the computations of machines or, to indicate the scope
of that notion more precisely, of “discrete mechanical devices” that can compute
in parallel. In spite of the great generality of his notion, Gandy was able to show
that any machine computable function is also Turing computable.

Both Turing and Gandy rely on a restricted central thesis, when connecting
an informal concept of calculability with a rigorous mathematical one. I sharpen
Gandy’s work and characterize “Turing Computors” and “Gandy Machines” as
discrete dynamical systems satisfying appropriate axiomatic conditions. Any Tur-
ing computor or Gandy machine turns out to be computationally reducible to a
Turing machine. These considerations constitute the core of section 5 and lead to
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the conclusion that computability, when relativized to a particular kind of comput-
ing device, has a standard methodological status: no thesis is needed, but rather
the recognition that the axiomatic conditions are correct for the intended device.
The proofs that the characterized notions are equivalent to Turing computability
establish then important mathematical facts.

In section 6, I give an “Outlook on Machines and Mind”. The question, whether
there are concepts of effectiveness broader than the ones characterized by the ax-
ioms for Gandy machines and Turing computors, has of course been asked for
both physical and mental processes. I discuss the seemingly sharp conflict be-
tween Gödel and Turing expressed by Gödel, when asserting: i) Turing tried (and
failed) in his [1936] to reduce all mental processes to mechanical ones, and ii) the
human mind infinitely surpasses any finite machine. This conflict can be clarified
and resolved by realizing that their deeper disagreement concerns the nature of
machines. The section ends with some brief remarks about supra-mechanical de-
vices: if there are such, then they cannot satisfy the physical restrictions expressed
through the boundedness and locality conditions for Gandy machines. Such sys-
tems must violate either the upper bound on signal propagation or the lower bound
on the size of distinguishable atomic components; such is the application of the
axiomatic method.

1.3 Connections

Returning to the beginning, we see that Turing’s notion of human computability
is exactly right for both a convincing negative solution of the “Entscheidungspro-
blem” and a precise characterization of formal systems that is needed for the gen-
eral formulation of the incompleteness theorems. One disclaimer and one claim
should be made at this point. For many philosophers computability is of spe-
cial importance because of its central role in “computational models of the human
mind”. This role is touched upon only indirectly through the reflections on the na-
ture and content of Church’s and Turing’s theses. The disclaimer is complemented
by the claim that the conceptual analysis naturally culminates in the formulation
of axioms that characterize different computability notions. Thus, arguments in
support of the various theses should be dismissed in favor of considerations for the
adequacy of axiomatic characterizations of computations that do not correspond
to deep mental procedures, but rather to strictly mechanical processes.

Wittgenstein’s terse remark about Turing machines, “These machines are hu-
mans who calculate,”2 captures the very feature of Turing’s analysis of calcula-
bility that makes it epistemologically relevant. Focusing on the epistemology of
mathematics, I will contrast this feature with two striking aspects of mathematical
experience implicit in repeated remarks of Gödel’s. The first “conceptional” as-
pect is connected to the notion of effective calculability through his assertion that

2From [1980, § 1096]. I first read this remark in [Shanker, 1987], where it is described as a
“mystifying reference to Turing machines.” In his later book [Shanker, 1998] that characterization
is still maintained.
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“with this concept one has for the first time succeeded in giving an absolute defi-
nition of an interesting epistemological notion”. The second “quasi-constructive”
aspect is related to axiomatic set theory through his claim that its axioms “can
be supplemented without arbitrariness by new axioms which are only the natural
continuation of the series of those set up so far”. Gödel speculated how the second
aspect might give rise to a humanly effective procedure that cannot be mechan-
ically calculated. Gödel’s remarks point to data that underlie the two aspects
and challenge, in the words of Parsons3, “any theory of meaning and evidence in
mathematics”. Not that I present a theory accounting for these data. Rather, I
clarify the first datum by reflecting on the question that is at the root of Turing’s
analysis. In its sober mathematical form the question asks, “What is an effectively
calculable function?”

2 DECIDABILITY AND CALCULABILITY

This section is mainly devoted to the decidability of relations between finite syntac-
tic objects and the calculability of number theoretic functions. The former notion
is seen by Gödel in 1930 to be derivative of the latter, since such relations are con-
sidered to be decidable just in case the characteristic functions of their arithmetic
analogues are calculable. Calculable functions rose to prominence in the 1920s
through Hilbert’s work on the foundations of mathematics. Hilbert conceived
of finitist mathematics as an extension of the Kroneckerian part of constructive
mathematics and insisted programmatically on carrying out consistency proofs by
finitist means only. Herbrand, who worked on Hilbert’s consistency problem, gave
a general and open-ended characterization of “finitistically calculable functions”
in his last paper [Herbrand, 1931a]. This characterization was communicated to
Gödel in a letter of 7 April 1931 and inspired the notion of general recursive func-
tion that was presented three years later in Gödel’s Princeton Lectures and is the
central concept to be discussed in Section 3.

Though this specific meta-mathematical background is very important, it is
crucial to see that it is embedded in a broader intellectual context, which is philo-
sophical as well as mathematical. There is, first, the normative requirement that
some central features of the formalization of logic and mathematics should be de-
cidable on a radically inter-subjective basis; this holds, in particular, for the proof
relation. It is reflected, second, in the quest for showing the decidability of prob-
lems in pure mathematics and is connected, third, to the issue of predictability
in physics and other sciences. Returning to the meta-mathematical background,
Hilbert’s Program builds on the formalization of mathematics and thus incorpo-
rates aspects of the normative requirement. Gödel expressed the idea for realizing
this demand in his [1933a]:

The first part of the problem [see fn. 4 for the formulation of “the
problem”] has been solved in a perfectly satisfactory way, the solu-

3In [Parsons, 1995].



On Computability 531

tion consisting in the so-called “formalization” of mathematics, which
means that a perfectly precise language has been invented, by which
it is possible to express any mathematical proposition by a formula.
Some of these formulas are taken as axioms, and then certain rules
of inference are laid down which allow one to pass from the axioms
to new formulas and thus to deduce more and more propositions, the
outstanding feature of the rules of inference being that they are purely
formal, i.e., refer only to the outward structure of the formulas, not
to their meaning, so that they could be applied by someone who knew
nothing about mathematics, or by a machine.4

Let’s start with a bit of history and see how the broad issue of decidability led
to the question, “What is the precise extension of the class of calculable number
theoretic functions?”

2.1 Decidability

Any historically and methodologically informed account of calculability will at
least point to Leibniz and the goals he sought to achieve with his project of a char-
acteristica universalis and an associated calculus ratiocinator. Similar projects for
the development of artificial languages were common in 17th century intellectual
circles. They were pursued for their expected benefits in promoting religious and
political understanding, as well as commercial exchange. Leibniz’s project stands
out for its emphasis on mechanical reasoning: a universal character is to come
with algorithms for making and checking inferences. The motivation for this re-
quirement emerges from his complaint about Descartes’s Rules for the direction
of the mind. Leibniz views them as a collection of vague precepts, requiring intel-
lectual effort as well as ingenuity from the agents following the rules. A reasoning
method, such as the universal character should provide, comes by contrast with
rules that completely determine the actions of the agents. Neither insight nor
intellectual effort is needed, as a mechanical thread of reasoning guides everyone
who can perceive and manipulate concrete configurations of symbols.

Thus I assert that all truths can be demonstrated about things ex-
pressible in this language with the addition of new concepts not yet
expressed in it — all such truths, I say, can be demonstrated solo cal-
culo, or solely by the manipulation of characters according to a certain
form, without any labor of the imagination or effort of the mind, just

4Cf. p. 45 of [Gödel 1933a]. To present the context of the remark, I quote the preceding
paragraph of Gödel’s essay: “The problem of giving a foundation of mathematics (and by mathe-
matics I mean here the totality of the methods of proof actually used by mathematicians) can be
considered as falling into two different parts. At first these methods of proof have to be reduced
to a minimum number of axioms and primitive rules of inference, which have to be stated as
precisely as possible, and then secondly a justification in some sense or other has to be sought
for these axioms, i.e., a theoretical foundation of the fact that they lead to results agreeing with
each other and with empirical facts.”
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as occurs in arithmetic and algebra. (Quoted in [Mates, 1986, fn. 65,
185])

Leibniz’s expectations for the growth of our capacity to resolve disputes were
correspondingly high. He thought we might just sit down at a table, formulate the
issues precisely, take our pens and say Calculemus! After finitely many calculation
steps the answer would be at hand, or rather visibly on the table. The thought
of having machines carry out the requisite mechanical operations had already
occurred to Lullus. It was pursued further in the 19th century by Jevons and was
pushed along by Babbage in a theoretically and practically most ambitious way.

The idea of an epistemologically unproblematic method, turning the task of
testing the conclusiveness of inference chains (or even of creating them) into a
purely mechanical operation, provides a direct link to Frege’s Begriffsschrift and
to the later reflections of Peano, Russell, Hilbert, Gödel and others. Frege, in
particular, saw himself in this Leibnizian tradition as he emphasized in the intro-
duction to his 1879 booklet. That idea is used in the 20th century as a normative
requirement on the fully explicit presentation of mathematical proofs in order to
insure inter-subjectivity. In investigations concerning the foundations of mathe-
matics that demand led from axiomatic, yet informal presentations to fully formal
developments. As an example, consider the development of elementary arithmetic
in [Dedekind 1888] and [Hilbert 1923]. It can’t be overemphasized that the step
from axiomatic systems to formal theory is a radical one, and I will come back to
it in the next subsection.5

There is a second Leibnizian tradition in the development of mathematical logic
that leads from Boole and de Morgan through Peirce to Schröder, Löwenheim and
others. This tradition of the algebra of logic had a deep impact on the classical for-
mulation of modern mathematical logic in Hilbert and Ackermann’s book. Partic-
ularly important was the work on the decision problem, which had a longstanding
tradition in algebraic logic and had been brought to a highpoint in Löwenheim’s
paper from 1915, Über Möglichkeiten im Relativkalkül. Löwenheim established,
in modern terminology, the decidability of monadic first-order logic and the re-
ducibility of the decision problem for first-order logic to its binary fragment. The
importance of that mathematical insight was clear to Löwenheim, who wrote about
his reduction theorem:

We can gauge the significance of our theorem by reflecting upon the
fact that every theorem of mathematics, or of any calculus that can
be invented, can be written as a relative equation; the mathematical

5The nature of this step is clearly discussed in the Introduction to Frege’s Grundgesetze

der Arithmetik, where he criticizes Dedekind for not having made explicit all the methods of
inference: “In a much smaller compass it [i.e., Dedekind’s Was sind und was sollen die Zahlen? ]
follows the laws of arithmetic much farther than I do here. This brevity is only arrived at, to
be sure, because much of it is not really proved at all. . . . nowhere is there a statement of the
logical laws or other laws on which he builds, and, even if there were, we could not possibly find
out whether really no others were used — for to make that possible the proof must be not merely
indicated but completely carried out.” [Geach and Black, 119]
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theorem then stands or falls according as the equation is satisfied or
not. This transformation of arbitrary mathematical theorems into rel-
ative equations can be carried out, I believe, by anyone who knows the
work of Whitehead and Russell. Since, now, according to our theorem
the whole relative calculus can be reduced to the binary relative calcu-
lus, it follows that we can decide whether an arbitrary mathematical
proposition is true provided we can decide whether a binary relative
equation is identically satisfied or not. (p. 246)

Many of Hilbert’s students and collaborators worked on the decision problem,
among them Ackermann, Behmann, Bernays, Schönfinkel, but also Herbrand and
Gödel. Hilbert and Ackermann made the connection of mathematical logic to the
algebra of logic explicit. They think that the former provides more than a precise
language for the following reason: “Once the logical formalism is fixed, it can be
expected that a systematic, so-to-speak calculatory treatment of logical formulas
is possible; that treatment would roughly correspond to the theory of equations
in algebra.” (p. 72) Subsequently, they call sentential logic “a developed algebra
of logic”. The decision problem, solved of course for the case of sentential logic, is
viewed as one of the most important logical problems; when it is extended to full
first-order logic it must be considered “as the main problem of mathematical logic”.
(p. 77) Why the decision problem should be considered as the main problem of
mathematical logic is stated clearly in a remark that may remind the reader of
Löwenheim’s and von Neumann’s earlier observations:

The solution of this general decision problem would allow us to decide,
at least in principle, the provability or unprovability of an arbitrary
mathematical statement. (p. 86)

Taking for granted the finite axiomatizability of set theory or some other funda-
mental theory in first-order logic, the general decision problem is solved when that
for first-order logic has been solved. And what is required for its solution?

The decision problem is solved, in case a procedure is known that
permits — for a given logical expression — to decide the validity, re-
spectively satisfiability, by finitely many operations. (p. 73)

Herbrand, for reasons similar to those of Hilbert and Ackermann, considered the
general decision problem in a brief note from 1929 “as the most important of
those, which exist at present in mathematics” (p. 42). The note was entitled On
the fundamental problem of mathematics.

In his paper On the fundamental problem of mathematical logic Herbrand pre-
sented a little later refined versions of Löwenheim’s reduction theorem and gave
positive solutions of the decision problem for particular parts of first-order logic.
The fact that the theorems are refinements is of interest, but not the crucial rea-
son for Herbrand to establish them. Rather, Herbrand emphasizes again and again
that Löwenheim’s considerations are “insufficient” (p. 39) and that his proof “is
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totally inadequate for our purposes” (p. 166). The fullest reason for these judg-
ments is given in section 7.2 of his thesis, Investigations in proof theory, when
discussing two central theorems, namely, if the formula P is provable (in first-
order logic), then its negation is not true in any infinite domain (Theorem 1) and
if P is not provable, then we can construct an infinite domain in which its negation
is true (Theorem 2).

Similar results have already been stated by Löwenheim, but his proofs,
it seems to us, are totally insufficient for our purposes. First, he gives
an intuitive meaning to the notion ‘true in an infinite domain’, hence
his proof of Theorem 2 does not attain the rigor that we deem desirable
. . . . Then — and this is the gravest reproach — because of the intuitive
meaning that he gives to this notion, he seems to regard Theorem 1 as
obvious. This is absolutely impermissible; such an attitude would lead
us, for example, to regard the consistency of arithmetic as obvious. On
the contrary, it is precisely the proof of this theorem . . . that presented
us with the greatest difficulty.

We could say that Löwenheim’s proof was sufficient in mathematics.
But, in the present work, we had to make it ‘metamathematical’ (see
Introduction) so that it would be of some use to us. (pp. 175–176)

The above theorems provide Herbrand with a method for investigating the decision
problem, whose solution would answer also the consistency problem for finitely
axiomatized theories. As consistency has to be established by using restricted
meta-mathematical methods, Herbrand emphasizes that the decision problem has
to be attacked exclusively with such methods. These meta-mathematical methods
are what Hilbert called finitist. So we reflect briefly on the origins of finitist math-
ematics and, in particular, on the views of its special defender and practitioner,
Leopold Kronecker.

2.2 Finitist mathematics

In a talk to the Hamburg Philosophical Society given in December 1930, Hilbert
reminisced about his finitist standpoint and its relation to Kronecker; he pointed
out:

At about the same time [around 1888], thus already more than a gen-
eration ago, Kronecker expressed clearly a view and illustrated it by
several examples, which today coincides essentially with our finitist
standpoint. [Hilbert, 1931, 487]

He added that Kronecker made only the mistake “of declaring transfinite infer-
ences as inadmissible”. Indeed, Kronecker disallowed the classical logical inference
from the negation of a universal to an existential statement, because a proof of
an existential statement should provide a witness. Kronecker insisted also on the
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decidability of mathematical notions, which implied among other things the re-
jection of the general concept of irrational number. In his 1891 lectures Über den
Zahlbegriff in der Mathematik he formulated matters clearly and forcefully:

The standpoint that separates me from many other mathematicians
culminates in the principle, that the definitions of the experiential sci-
ences (Erfahrungswissenschaften), — i.e., of mathematics and the nat-
ural sciences, . . . — must not only be consistent in themselves, but
must be taken from experience. It is even more important that they
must contain a criterion by means of which one can decide for any
special case, whether or not the given concept is subsumed under the
definition. A definition, which does not provide that, may be praised
by philosophers or logicians, but for us mathematicians it is a mere
verbal definition and without any value. (p. 240)

Dedekind had a quite different view. In the first section of Was sind und was
sollen die Zahlen? he asserts that “things”, any objects of our thought, can
frequently “be considered from a common point of view” and thus “be associated
in the mind” to form a system. Such systems S are also objects of our thought
and are “completely determined when it is determined for every thing whether it
is an element of S or not”. Attached to this remark is a footnote differentiating
his position from Kronecker’s:

How this determination is brought about, and whether we know a way
of deciding upon it, is a matter of indifference for all that follows; the
general laws to be developed in no way depend upon it; they hold
under all circumstances. I mention this expressly because Kronecker
not long ago (Crelle’s Journal, Vol. 99, pp. 334–336) has endeavored
to impose certain limitations upon the free formation of concepts in
mathematics, which I do not believe to be justified; but there seems
to be no call to enter upon this matter with more detail until the
distinguished mathematician shall have published his reasons for the
necessity or merely the expediency of these limitations. (p. 797)

In Kronecker’s essay Über den Zahlbegriff and his lectures Über den Zahlbegriff in
der Mathematik one finds general reflections on the foundations of mathematics
that at least partially address Dedekind’s request for clarification.

Kronecker views arithmetic in his [1887] as a very broad subject, encompassing
all mathematical disciplines with the exception of geometry and mechanics. He
thinks that one will succeed in “grounding them [all the mathematical disciplines]
solely on the number-concept in its narrowest sense, and thus in casting off the
modifications and extensions of this concept which were mostly occasioned by the
applications to geometry and mechanics”. In a footnote Kronecker makes clear
that he has in mind the addition of “irrational as well as continuous quantities”.
The principled philosophical distinction between geometry and mechanics on the
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one hand and arithmetic (in the broad sense) on the other hand is based on Gauss’
remarks about the theory of space and the pure theory of quantity: only the latter
has “the complete conviction of necessity (and also of absolute truth),” whereas
the former has also outside of our mind a reality “to which we cannot a priori
completely prescribe its laws”.

These programmatic remarks are refined in the 1891 lectures. The lecture of 3
June 1891 summarizes Kronecker’s perspective on mathematics in four theses. The
first asserts that mathematics does not tolerate “Systematik,” as mathematical
research is a matter of inspiration and creative imagination. The second thesis
asserts that mathematics is to be treated as a natural science “for its objects
are as real as those of its sister sciences (Schwesterwissenschaften)”. Kronecker
explains:

That this is so is sensed by anyone who speaks of mathematical ‘dis-
coveries’. Since we can discover only something that already really
exists; but what the human mind generates out of itself that is called
‘invention’. The mathematician ‘discovers’, consequently, by methods,
which he ‘invented’ for this very purpose. (pp. 232–3)

The next two theses are more restricted in scope, but have important methodolog-
ical content. When investigating the fundamental concepts of mathematics and
when developing a particular area, the third thesis insists, one has to keep separate
the individual mathematical disciplines. This is particularly important, because
the fourth thesis demands that, for any given discipline, i) its characteristic meth-
ods are to be used for determining and elucidating its fundamental concepts and ii)
its rich content is to be consulted for the explication of its fundamental concepts.6

In the end, the only real mathematical objects are the natural numbers: “True
mathematics needs from arithmetic only the [positive] integers.” (p. 272)

In his Paris Lecture of 1900, Hilbert formulated as an axiom that any math-
ematical problem can be solved, either by answering the question posed by the
problem or by showing the impossibility of an answer. Hilbert asked, “What is
a legitimate condition that solutions of mathematical problems have to satisfy?”
Here is the formulation of the central condition:

I have in mind in particular [the requirement] that we succeed in es-
tablishing the correctness of the answer by means of a finite number
of inferences based on a finite number of assumptions, which are in-
herent in the problem and which have to be formulated precisely in
each case. This requirement of logical deduction by means of a finite

6Kronecker explains the need for ii) in a most fascinating way as follows: “Clearly, when
a reasonable master builder has to put down a foundation, he is first going to learn carefully
about the building for which the foundation is to serve as the basis. Furthermore, it is foolish
to deny that the richer development of a science may lead to the necessity of changing its basic
notions and principles. In this regard, there is no difference between mathematics and the natural
sciences: new phenomena overthrow the old hypotheses and replace them by others.” (p. 233)
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number of inferences is nothing but the requirement of rigor in argu-
mentation. Indeed, the requirement of rigor . . . corresponds [on the
one hand] to a general philosophical need of our understanding and,
on the other hand, it is solely by satisfying this requirement that the
thought content and the fruitfulness of the problem in the end gain
their full significance. (p. 48)

Then he tries to refute the view that only arithmetic notions can be treated rig-
orously. He considers that opinion as thoroughly mistaken, though it has been
“occasionally advocated by eminent men”. That is directed against Kronecker as
the next remark makes clear.

Such a one-sided interpretation of the requirement of rigor soon leads
to ignoring all concepts that arise in geometry, mechanics, and physics,
to cutting off the flow of new material from the outer world, and finally,
as a last consequence, to the rejection of the concepts of the continuum
and the irrational number. (p. 49)

Positively and in contrast, Hilbert thinks that mathematical concepts, whether
emerging in epistemology, geometry or the natural sciences, are to be investigated
in mathematics. The principles for them have to be given by “a simple and com-
plete system of axioms” in such a way that “the rigor of the new concepts, and their
applicability in deductions, is in no way inferior to the old arithmetic notions”.
This is a central part of Hilbert’s much-acclaimed axiomatic method, and Hilbert
uses it to shift the Kroneckerian effectiveness requirements from the mathematical
to the “systematic” meta-mathematical level.7 That leads, naturally, to a distinc-
tion between “solvability in principle” by the axiomatic method and “solvability
by algorithmic means”. Hilbert’s famous 10th Problem concerning the solvability
of Diophantine equations is a case in which an algorithmic solution is sought; the

7That perspective, indicated here in a very rudimentary form, is of course central for the
meta-mathematical work in the 1920s and is formulated in the sharpest possible way in many
of Hilbert’s later publications. Its epistemological import is emphasized, for example in the first
chapter of Grundlagen der Mathematik I, p. 2: “Also formal axiomatics definitely requires for its
deductions as well as for consistency proofs certain evidences, but with one essential difference:
this kind of evidence is not based on a special cognitive relation to the particular subject, but
is one and the same for all axiomatic [formal] systems, namely, that primitive form of cognition,
which is the prerequisite for any exact theoretical research whatsoever.” In his Hamburg talk of
1928 Hilbert stated the remarkable philosophical significance he sees in the proper formulation
of the rules for the meta-mathematical “formula game”: “For this formula game is carried out
according to certain definite rules, in which the technique of our thinking is expressed. These
rules form a closed system that can be discovered and definitively stated. The fundamental idea
of my proof theory is none other than to describe the activity of our understanding, to make
a protocol of the rules according to which our thinking actually proceeds.” He adds, against
Kronecker and Brouwer’s intuitionism, “If any totality of observations and phenomena deserves
to be made the object of a serious and thorough investigation, it is this one. Since, after all, it is
part of the task of science to liberate us from arbitrariness, sentiment, and habit and to protect
us from the subjectivism that already made itself felt in Kronecker’s views and, it seems to me,
finds its culmination in intuitionism.” [van Heijenoort, 1967, 475]
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impossibility of such a solution was found only in the 1970s after extensive work by
Robinson, Davis and Matijasevic, work that is closely related to the developments
of computability theory described here; cf. [Davis, 1973].

At this point in 1900 there is no firm ground for Hilbert to claim that Kro-
neckerian rigor for axiomatic developments has been achieved. After all, it is only
the radical step from axiomatic to formal theories that guarantees the rigor of
solutions to mathematical problems in the above sense, and that step was taken
by Hilbert only much later. Frege had articulated appropriate mechanical features
and had realized them for the arguments given in his concept notation. His book-
let Begriffsschrift offered a rich language with relations and quantifiers, whereas
its logical calculus required that all assumptions be listed and that each step in a
proof be taken in accord with one of the antecedently specified rules. Frege consid-
ered this last requirement as a sharpening of the axiomatic method he traced back
to Euclid’s Elements. With this sharpening he sought to recognize the “epistemo-
logical nature” of theorems. In the introduction to Grundgesetze der Arithmetik
he wrote:

Since there are no gaps in the chains of inferences, each axiom, assump-
tion, hypothesis, or whatever you like to call it, upon which a proof is
founded, is brought to light; and so we gain a basis for deciding the
epistemological nature of the law that is proved. (p. 118)

But a true basis for such a judgment can be obtained only, Frege realized, if infer-
ences do not require contentual knowledge: their application has to be recognizable
as correct on account of the form of the sentences occurring in them. Frege claimed
that in his logical system “inference is conducted like a calculation” and observed:

I do not mean this in a narrow sense, as if it were subject to an algo-
rithm the same as . . . ordinary addition and multiplication, but only
in the sense that there is an algorithm at all, i.e., a totality of rules
which governs the transition from one sentence or from two sentences
to a new one in such a way that nothing happens except in conformity
with these rules.8 [Frege, 1984, 237]

Hilbert took the radical step to fully formal axiomatics, prepared through the
work of Frege, Peano, Whitehead and Russell, only in the lectures he gave in the
winter-term of 1917/18 with the assistance of Bernays. The effective presentation
of formal theories allowed Hilbert to formulate in 1922 the finitist consistency
program, i.e., describe formal theories in Kronecker-inspired finitist mathematics
and formulate consistency in a finitistically meaningful way. In line with the Paris

8Frege was careful to emphasize (in other writings) that all of thinking “can never be carried
out by a machine or be replaced by a purely mechanical activity” [Frege 1969, 39]. He went on
to claim: “It is clear that the syllogism can be brought into the form of a calculation, which
however cannot be carried out without thinking; it [the calculation] just provides a great deal of
assurance on account of the few rigorous and intuitive forms in which it proceeds.”
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remarks, he viewed this in [1921/22] as a dramatic expansion of Kronecker’s purely
arithmetic finitist mathematics:

We have to extend the domain of objects to be considered, i.e., we have
to apply our intuitive considerations also to figures that are not number
signs. Thus we have good reason to distance ourselves from the earlier
dominant principle according to which each theorem of mathematics is
in the end a statement concerning integers. This principle was viewed
as expressing a fundamental methodological insight, but it has to be
given up as a prejudice. (p. 4a)

As to the extended domain of objects, it is clear that formulas and proofs of formal
theories are to be included and that, by contrast, geometric figures are definitely
excluded. Here are the reasons for holding that such figures are “not suitable
objects” for finitist considerations:

. . . the figures we take as objects must be completely surveyable and
only discrete determinations are to be considered for them. It is only
under these conditions that our claims and considerations have the
same reliability and evidence as in intuitive number theory. (p. 5a)

If we take this expansion of the domain of objects seriously (as we should, I think),
we are dealing not just with numbers and associated principles, but more generally
with elements of inductively generated classes and associated principles of proof
by induction and definition by recursion. That is beautifully described in the
Introduction to Herbrand’s thesis and was strongly emphasized by von Neumann
in his Königsberg talk of 1930. For our systematic work concerning computability
we have to face then two main questions, i) “How do we move from decidability
issues concerning finite syntactic configurations to calculability of number theoretic
functions?” and ii) “Which number theoretic functions can be viewed as being
calculable?”

2.3 (Primitive) Recursion

Herbrand articulated in the Appendix to his [1931] (the paper itself had been
written already in 1929) informed doubts concerning the positive solvability of the
decision problem: “Note finally that, although at present it seems unlikely that the
decision problem can be solved, it has not yet been proved that it is impossible to do
so.” (p. 259) These doubts are based on the second incompleteness theorem, which
is formulated by Herbrand as asserting, “it is impossible to prove the consistency
of a theory through arguments formalizable in the theory.”

. . . if we could solve the decision problem in the restricted sense [i.e.,
for first-order logic], it would follow that every theory which has only a
finite number of hypotheses and in which this solution is formalizable
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would be inconsistent (since the question of the consistency of a the-
ory having only a finite number of hypotheses can be reduced to this
problem). (p. 258)

A historical fact has to be mentioned here: Herbrand spent the academic year
1930/31 in Germany and worked during the fall of 1930 with von Neumann in
Berlin. Already in November of 1930 he learned through von Neumann about
Gödel’s first incompleteness theorem and by early spring of 1931 he had received
through Bernays the galleys of [Gödel 1931].

Von Neumann, in turn, had learned from Gödel himself about a version of the
first incompleteness theorem at the Second Conference for Epistemology of the
Exact Sciences held from 5 to 7 September 1930 in Königsberg. On the last day of
that conference a roundtable discussion on the foundations of mathematics took
place to which Gödel had been invited. Hans Hahn chaired the discussion and its
participants included Carnap, Heyting and von Neumann. Toward the end of the
discussion Gödel made brief remarks about the first incompleteness theorem; the
transcript of his remarks was published in Erkenntnis and as [1931a] in the first
volume of his Collected Works. This is the background for the personal encounter
with von Neumann in Königsberg; Wang reports Gödel’s recollections in his [1981]:

Von Neumann was very enthusiastic about the result and had a private
discussion with Gödel. In this discussion, von Neumann asked whether
number-theoretical undecidable propositions could also be constructed
in view of the fact that the combinatorial objects can be mapped onto
the integers and expressed the belief that it could be done. In reply,
Gödel said, “Of course undecidable propositions about integers could
be so constructed, but they would contain concepts quite different from
those occurring in number theory like addition and multiplication.”
Shortly afterward Gödel, to his own astonishment, succeeded in turn-
ing the undecidable proposition into a polynomial form preceded by
quantifiers (over natural numbers). At the same time but indepen-
dently of this result, Gödel also discovered his second theorem to the
effect that no consistency proof of a reasonably rich system can be
formalized in the system itself. (pp. 654–5)

This passage makes clear that Gödel had not yet established the second incom-
pleteness theorem at the time of the Königsberg meeting. On 23 October 1930
Hahn presented to the Vienna Academy of Sciences an abstract containing the the-
orem’s classical formulation. The full text of Gödel’s 1931-paper was submitted
to the editors of Monatshefte on 17 November 1930.9 The above passage makes

9As to the interaction between von Neumann and Gödel after Königsberg and von Neumann’s
independent discovery of the second incompleteness theorem, cf. their correspondence published
in volume V of Gödel’s Collected Works. — In the preliminary reflections of his [1931] Gödel
simply remarks on p. 146 about the “arithmetization”: “For meta-mathematical considerations
it is of course irrelevant, which objects are taken as basic signs, and we decide to use natural
numbers as such [basic signs].”
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also clear something surprising, namely, that the arithmetization of syntax used so
prominently in the 1931 paper was seemingly developed only after the Königsberg
meeting. (There is also no hint of this technique in [Gödel, 1931a].) Given an ef-
fective coding of syntax the part of finitist mathematics needed for the description
of formal theories is consequently contained in finitist number theory, and finitist
decision procedures can then presumably be captured by finitistically calculable
number theoretic functions. This answers the first question formulated at the end
of section 2.2. Let us take now a step towards answering the second question,
“Which number theoretic functions can be viewed as being calculable?”

It was Kronecker who insisted on decidability of mathematical notions and
calculability of functions, but it was Dedekind who formulated in Was sind und was
sollen die Zahlen? the general concept of a “(primitive) recursive” function. These
functions are obviously calculable and Dedekind proved, what is not so important
from our computational perspective, namely, that they can be made explicit in
his logicist framework.10 Dedekind considers a simply infinite system (N,ϕ, 1)
that is characterized by axiomatic conditions, now familiar as the Dedekind-Peano
axioms:

1 ∈ N,
(∀n ∈ N) ϕ(n) ∈ N,

(∀n,m ∈ N)(ϕ(n) = ϕ(m) → n = m),
(∀n ∈ N) ϕ(n) 6= 1 and

(1 ∈ Σ & (∀n ∈ N)(n ∈ Σ → ϕ(n) ∈ Σ)) → (∀n ∈ N) n ∈ Σ.

(Σ is any subset ofN .) For this and other simply infinite systems Dedekind isolates
a crucial feature in theorem 126, Satz der Definition durch Induktion: let (N,ϕ, 1)
be a simply infinite system, let θ be an arbitrary mapping from a system Ω to
itself, and let ω be an element of Ω; then there is exactly one mapping ψ from N
to Ω satisfying the recursion equations:

ψ(1) = ω,
ψ(ϕ(n)) = θ(ψ(n)).

The proof requires subtle meta-mathematical considerations; i.e., an inductive
argument for the existence of approximations to the intended mapping on ini-
tial segments of N . The basic idea was later used in axiomatic set theory and
extended to functions defined by transfinite recursion. It is worth emphasizing
that Dedekind’s is a very abstract idea: show the existence of a unique solution
for a functional equation! Viewing functions as given by calculation procedures,
Dedekind’s general point recurs in [Hilbert, 1921/22], [Skolem, 1923], [Herbrand,
1931a], and [Gödel, 1934], when the existence of a solution is guaranteed by the
existence of a calculation procedure.

In the context of his overall investigation concerning the nature and meaning
of number, Dedekind draws two important conclusions with the help of theorem

10However, in his [193?] Gödel points out on p. 21, that it is Dedekind’s method that is used to
show that recursive definitions can be defined explicitly in terms of addition and multiplication.
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126: on the one hand, all simply infinite systems are similar (theorem 132), and on
the other hand, any system that is similar to a simply infinite one is itself simply
infinite (theorem 133). The first conclusion asserts, in modern terminology, that
the Dedekind-Peano axioms are categorical. Dedekind infers in his remark 134
from this fact, again in modern terminology, that all simply infinite systems are
elementarily equivalent — claiming to justify in this way his abstractive conception
of natural numbers.

Dedekind’s considerations served a special foundational purpose. However, the
recursively defined number theoretic functions have an important place in mathe-
matical practice and can be viewed as part of constructive (Kroneckerian) mathe-
matics quite independent of their logicist foundation. As always, Dedekind himself
is very much concerned with the impact of conceptual innovations on the devel-
opment of actual mathematics. So he uses the recursion schema to define the
arithmetic operations of addition, multiplication and exponentiation. For addi-
tion, to consider just one example, take Ω to be N , let ω be m and define

m+ 1 = ϕ(m)
m+ ϕ(n) = ϕ(m+ n).

Then Dedekind establishes systematically the fundamental properties of these op-
erations (e.g., for addition and multiplication, commutativity, associativity, and
distributivity, but also their compatibility with the ordering of N). It is an abso-
lutely elementary and rigorously detailed development that uses nothing but the
schema of primitive recursion to define functions and the principle of proof by
induction (only for equations) to establish general statements. In a sense it is a
more principled and focused presentation of this elementary part of finitist mathe-
matics than that given by either Kronecker, Hilbert and Bernays in their 1921/22
lectures, or Skolem in his 1923 paper, where the foundations of elementary arith-
metic are established on the basis “of the recursive mode of thought, without the
use of apparent variables ranging over infinite domains”.

In their Lecture Notes [1921/22], Hilbert and Bernays treat elementary arith-
metic from their new finitist standpoint; here, in elementary arithmetic, they say,
we have “that complete certainty of our considerations. We get along without
axioms, and the inferences have the character of the concretely-certain.” They
continue:

It is first of all important to see clearly that this part of mathematics
can indeed be developed in a definitive way and in a way that is com-
pletely satisfactory for knowledge. The standpoint we are gaining in
this pursuit is of fundamental importance also for our later considera-
tions. (p. 51)

Their standpoint allows them to develop elementary arithmetic as “an intuitive
theory of certain simple figures . . . , which we are going to call number signs
(Zahlzeichen)”. The latter are generated as 1, 1+1, etc. The arithmetic operations
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are introduced as concrete operations on number signs. For example, a+ b refers
to the number sign “which is obtained by first placing + after the number sign a
and then the number sign b”. (p. 54) Basic arithmetic theorems like associativity
of addition, are obtained by intuitive considerations including also the “ordinary
counting of signs”. They define less-than as a relation between number signs: a
is less than b, just in case a coincides with a proper part of b. Then they use the
method of descent to prove general statements, for example, the commutativity of
addition. Having defined also divisibility and primality in this concrete manner,
they establish Euclid’s theorem concerning the infinity of primes. They assert:

Now we can proceed in this manner further and further; we can intro-
duce the concepts of the greatest common divisor and the least common
multiple, furthermore the number congruences. (p. 62)

That remark is followed immediately by the broader methodological claim that
the definition of number theoretic functions by means of recursion formulas is ad-
missible from the standpoint of their intuitive considerations. However, “For every
single such definition by recursion it has to be determined that the application of
the recursion formula indeed yields a number sign as function value — for each
set of arguments.”11 They consider then as an example the standard definition of
exponentiation. The mathematical development is concluded with the claim:

Fermat’s little theorem, furthermore the theorems concerning quadratic
residues can be established by the usual methods as intuitive theorems
concerning the number signs. In fact all of elementary number theory
can be developed as a theory of number signs by means of concrete
intuitive considerations. (p. 63)

This development is obviously carried farther than Dedekind’s and proceeds in a
quite different, constructive foundational framework. For our considerations con-
cerning computability it is important that we find here in a rough form Herbrand’s
way of characterizing finistically calculable functions; that will be discussed in the
next subsection.

Skolem’s work was carried out in 1919, but published only in 1923; there is an
acknowledged Kroneckerian influence, but the work is actually carried out in a
fragment of Principia Mathematica. Skolem takes as basic the notions “natural
number”, “the number n + 1 following the number n”, as well as the “recursive
mode of thought”. By the latter, I suppose, Skolem understands the systematic
use of “recursive definitions” and “recursive proof”, i.e., definition by primitive re-
cursion and proof by induction. Whereas the latter is indeed taken as a principle,
the former is not really: for each operation or relation (via its characteristic func-
tion) an appropriate descriptive function in the sense of Principia Mathematica

11Here is the German formulation of this crucial condition: “Es muss nur bei jeder solchen
Definition durch Rekursion eigens festgestellt werden, dass tatsächlich für jede Wertbestimmung
der Argumente die Anwendung der Rekursionsformel ein Zahlzeichen als Funktionswert liefert.”
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has to be shown to have an unambiguous meaning, i.e., to be properly defined.12

The actual mathematical development leads very carefully, and in much greater
detail than in Hilbert and Bernays’ lectures, to Euclid’s theorem in the last section
of the paper; the paper ends with reflections on cardinality. It is Skolem’s explicit
goal to avoid unrestricted quantification, as that would lead to “an infinite task
— that means one that cannot be completed . . . ” (p. 310). In the Conclud-
ing Remark that was added to the paper at the time of its publication, Skolem
makes a general point that is quite in the spirit of Hilbert: “The justification for
introducing apparent variables ranging over infinite domains therefore seems very
problematic; that is, one can doubt that there is any justification for the actual
infinite or the transfinite.” (p. 332) Skolem also announces the publication of
another paper, he actually never published, in which the “formal cumbrousness”
due to his reliance on Principia Mathematica would be avoided. “But that work,
too,” Skolem asserts, “is a consistently finitist one; it is built upon Kronecker’s
principle that a mathematical definition is a genuine definition if and only if it
leads to the goal by means of a finite number of trials.” (p. 333)

Implicit in these discussions is the specification of a class PR of functions that
is obtained from the successor function by explicit definitions and the schema of
(primitive) recursion. The definition of the class PR emerged in the 1920s; in
Hilbert’s On the Infinite (pp. 387–8) one finds it in almost the contemporary
form: it is given inductively by specifying initial functions and closing under two
definitional schemas, namely, what Hilbert calls substitution and (elementary) re-
cursion. This can be done more precisely as follows: PR contains as its initial
functions the zero-function Z, the successor function S, and the projection func-
tions Pn

i for each n and each i with 1 ≤ i ≤ n. These functions satisfy the
equations Z(x) = 0, S(x) = x′, and Pn

i (x1, . . . , xn) = xi, for all x, x1, . . . , xn;x′ is
the successor of x. The class is closed under the schema of composition: Given an
m-place function ψ in PR and n-place functions ϕ1, . . . , ϕm in PR, the function φ
defined by

φ(x1, . . . , xn) = ψ(ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn))

is also in PR; φ is said to be obtained by composition from ψ and ϕ1, . . . , ϕm. PR
is also closed under the schema of primitive recursion: Given an n-place function
ψ in PR, and an n+ 24-place function ϕ in PR, the function φ defined by

φ(x1, . . . , xn, 0) = ψ(x1, . . . , xn)
φ(x1, . . . , xn, y

′) = ϕ(x1, . . . , xn, y, φ(x1, . . . , xn, y))

is a function in PR; φ is said to be obtained by primitive recursion from ψ and ϕ.
Thus, a function is primitive recursive if and only if it can be obtained from some
initial functions by finitely many applications of the composition and recursion
schemas. This definition was essentially given in Gödel’s 1931 paper together with

12That is done for addition on p. 305, for the less-than relation on p. 307, and for subtraction
on p. 314.
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arguments that this class contains the particular functions that are needed for the
arithmetic description of Principia Mathematica and related systems.

By an inductive argument on the definition of PR one can see that the val-
ues of primitive recursive functions can be determined, for any particular set of
arguments, by a standardized calculation procedure; thus, all primitive recursive
functions are in this sense calculable. Yet there are calculable functions, which are
not primitive recursive. An early example is due to Hilbert’s student Ackermann;
it was published in 1928, but discussed already in [Hilbert, 1925]. Here is the
definition of the Ackermann function:

φ0(x, y) = S(y)

φn′(x, 0) =







x if n = 0
0 if n = 1
1 if n > 1

φn′(x, y′) = φn(x, φn′(x, y))

Notice that φ1 is addition, φ2 is multiplication, φ3 is exponentiation, etc; i.e., the
next function is always obtained by iterating the previous one. For each n, the
function φn(x, x) is primitive recursive, but φ(x, x, x) is not: Ackermann showed
that it grows faster than any primitive recursive function. Herbrand viewed the
Ackermann function in his [1931a] as finitistically calculable.

2.4 Formalizability and calculability

In lectures and publications from 1921 and 1922, Hilbert and Bernays established
the consistency of an elementary part of arithmetic from their new finitist perspec-
tive. The work is described together with an Ansatz for its extension in [Hilbert,
1923]. They restrict the attention to the quantifier-free part of arithmetic that
contains all primitive recursive functions and an induction rule; that part is now
called primitive recursive arithmetic (PRA) and is indeed the system F* of Her-
brand’s discussed below, when the class F of finitist functions consists of exactly
the primitive recursive ones.13

PRA has a direct finitist justification, and thus there was no programmatic
need to establish its consistency. However, the proof was viewed as a stepping-
stone towards a consistency proof for full arithmetic and analysis. It is indeed the
first sophisticated proof-theoretic argument, transforming arbitrary derivations
into configurations of variable-free formulas. The truth-values of these formulas
can be effectively determined, because Hilbert and Bernays insist on the calcu-
lability of functions and the decidability of relations. Ackermann attempted in
his dissertation, published as [Ackermann, 1924], to extend this very argument
to analysis. Real difficulties emerged even before the article appeared and the

13Tait argues in his [1981] for the identification of finitist arithmetic with PRA. This a conceptu-
ally coherent position, but I no longer think that it reflects the historical record of considerations
and work surrounding Hilbert’s Program; cf. also Tait’s [2002], the papers by Zach referred to,
Ravaglia’s Carnegie Mellon Ph.D. thesis, as well as our joint paper [2005].
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validity of the result had to be restricted to a part of elementary number theory.
The result is obtained also in von Neumann’s [1927]. The problem of extending
the restricted result was thought then to be a straightforward mathematical one.
That position was clearly taken by Hilbert in his Bologna address of 1928, when
he claims that the results of Ackermann and von Neumann cover full arithmetic
and then asserts that there is an Ansatz of a consistency proof for analysis: “This
[Ansatz] has been pursued by Ackermann already to such an extent that the re-
maining task amounts only to proving a purely arithmetic elementary finiteness
theorem.” (p. 4)

These difficulties were revealed, however, by the incompleteness theorems as
“conceptual” philosophical ones. The straightforwardly mathematical consequence
of the second incompleteness theorem can be formulated as follows: Under general
conditions14 on a theory T , T proves the conditional (conT → G); conT is the
statement expressing the consistency of T, and G is the Gödel sentence. G states
its own unprovability and is, by the first incompleteness theorem, not provable
in T. Consequently, G would be provable in T, as soon as a finitist consistency
proof for T could be formalized in T. That’s why the issue of the formalizability
of finitist considerations plays such an important role in the emerging discussion
between von Neumann, Herbrand and Gödel. At issue was the extent of finitist
methods and thus the reach of Hilbert’s consistency program. That raises in
particular the question, what are the finitistically calculable functions; it is clear
that the primitive recursively defined functions are to be included. (Recall the
rather general way in which recursive definitions were dicussed in Hilbert’s lectures
[1921/22].)

Herbrand’s own [1931a] is an attempt to harmonize his proof theoretic investi-
gations with Gödel’s results. Gödel insisted in his paper that the second incom-
pleteness theorem does not contradict Hilbert’s “formalist viewpoint”:

For this viewpoint presupposes only the existence of a consistency proof
in which nothing but finitary means of proof is used, and it is conceiv-
able that there exist finitary proofs that cannot be expressed in the
formalism of P (or of M and A).15

Having received the galleys of Gödel’s paper, von Neumann writes in a letter of
12 January 1931:

I absolutely disagree with your view on the formalizability of intuition-
ism. Certainly, for every formal system there is, as you proved, another
formal one that is (already in arithmetic and the lower functional cal-
culus) stronger. But that does not affect intuitionism at all.

14The general conditions on T include, of course, the representability conditions for the first
theorem and the Hilbert-Bernays derivability conditions for the second theorem.

15Collected Works I, p. 195. P is a version of the system of Principia Mathematica, M the
system of set theory introduced by von Neumann, and A classical analysis.
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(Note that Herbrand and von Neumann, but also others at the time, use intu-
itionist as synonymous with finitist; even Gödel did as should be clear from his
[1931a].) Denoting first-order number theory by A, analysis by M , and set theory
by Z, von Neumann continues:

Clearly, I cannot prove that every intuitionistically correct construction
of arithmetic is formalizable in A or M or even in Z — for intuitionism
is undefined and undefinable. But is it not a fact, that not a single
construction of the kind mentioned is known that cannot be formalized
in A, and that no living logician is in the position of naming such [[a
construction]]? Or am I wrong, and you know an effective intuitionistic
arithmetic construction whose formalization in A creates difficulties? If
that, to my utmost surprise, should be the case, then the formalization
should work in M or Z!

This line of argument was sharpened, when Herbrand wrote to Gödel on 7 April
1931. By then he had discussed the incompleteness phenomena extensively with
von Neumann, and he had also read the galleys of [Gödel, 1931]. Herbrand’s
letter has to be understood, and Gödel in his response quite clearly did, as giving
a sustained argument against Gödel’s assertion that the second incompleteness
theorem does not contradict Hilbert’s formalist viewpoint.

Herbrand introduces a number of systems for arithmetic, all containing the ax-
ioms for predicate logic with identity and the Dedekind-Peano axioms for zero and
successor. The systems are distinguished by the strength of the induction principle
and by the class F of finitist functions for which recursion equations are available.
The system with induction for all formulas and recursion equations for the func-
tions in F is denoted here by F; if induction is restricted to quantifier-free formulas,
I denote the resulting system by F*. The axioms for the elements f1, f2, f3, . . .
in F must satisfy according to Herbrand’s letter the following conditions:

1. The defining axioms for fn contain, besides fn, only functions of lesser index.

2. These axioms contain only constants and free variables.

3. We must be able to show, by means of intuitionistic proofs, that with these
axioms it is possible to compute the value of the functions univocally for
each specified system of values of their arguments.

As examples for classes F Herbrand considers the set E1 of addition and mul-
tiplication, as well as the set E2 of all primitive recursive functions. He asserts
that many other functions are definable by his “general schema”, in particular,
the non-primitive recursive Ackermann function. He also argues that one can con-
struct by diagonalization a finitist function that is not in E, if E contains axioms
such that “one can always determine, whether or not certain defining axioms [for
the elements of E] are among these axioms”. It is here that the “double” use
of finitist functions — straightforwardly as part of finitist mathematical practice
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and as a tool to describe formal theories — comes together to allow the definition
of additional finitist functions; that is pointed out in Herbrand’s letter to Gödel.
Indeed, it is quite explicit also in Herbrand’s almost immediate reaction to the
incompleteness phenomena in his letter to Chevalley from 3 December 1930. (See
[Sieg, 1994, 103–4].)

This fact of the open-endedness of any finitist presentation of the concept “fini-
tist function” is crucial for Herbrand’s conjecture that one cannot prove that all
finitist methods are formalizable in Principia Mathematica. But he claims that, as
a matter of fact, every finitist proof can be formalized in a system F*, based on a
suitable class F that depends on the given proof, thus in Principia Mathematica.
Conversely, he insists that every proof in the quantifier-free part of F* is finitist.
He summarizes his reflections by saying in the letter and with almost identical
words in [1931a]:

It reinforces my conviction that it is impossible to prove that every
intuitionistic proof is formalizable in Russell’s system, but that a coun-
terexample will never be found. There we shall perhaps be compelled
to adopt a kind of logical postulate.

Herbrand’s conjectures and claims are completely in line with those von Neumann
communicated to Gödel in his letters of November 1930 and January 1931. In the
former letter von Neumann wrote:

I believe that every intuitionistic consideration can be formally copied,
because the “arbitrarily nested” recursions of Bernays-Hilbert are equiv-
alent to ordinary transfinite recursions up to appropriate ordinals of
the second number class. This is a process that can be formally cap-
tured, unless there is an intuitionistically definable ordinal of the sec-
ond number class that could not be defined formally — which is in my
view unthinkable. Intuitionism clearly has no finite axiom system, but
that does not prevent its being a part of classical mathematics that
does have one. (Collected Works V, p. 339)

We know of Gödel’s response to von Neumann’s dicta not through letters from
Gödel, but rather through the minutes of a meeting of the Schlick or Vienna
Circle that took place on 15 January 1931. According to these minutes Gödel
viewed as questionable the claim that the totality of all intuitionistically correct
proofs is contained in one formal system. That, he emphasized, is the weak spot
in von Neumann’s argumentation. (Gödel did respond to von Neumann, but his
letters seem to have been lost. The minutes are found in the Carnap Archives of
the University of Pittsburgh.)

When answering Herbrand’s letter, Gödel makes more explicit his reasons for
questioning the formalizability of finitist considerations in a single formal system
like Principia Mathematica. He agrees with Herbrand on the indefinability of the
concept “finitist proof”. However, even if one accepts Herbrand’s very schematic
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presentation of finitist methods and the claim that every finitist proof can be
formalized in a system of the form F*, the question remains “whether the intu-
itionistic proofs that are required in each case to justify the unicity of the recursion
axioms are all formalizable in Principia Mathematica”. Gödel continues:

Clearly, I do not claim either that it is certain that some finitist proofs
are not formalizable in Principia Mathematica, even though intuitively
I tend toward this assumption. In any case, a finitist proof not for-
malizable in Principia Mathematica would have to be quite extraordi-
narily complicated, and on this purely practical ground there is very
little prospect of finding one; but that, in my opinion, does not alter
anything about the possibility in principle.

At this point there is a stalemate between Herbrand’s “logical postulate” that no
finitist proof outside of Principia Mathematica will be found and Gödel’s “possi-
bility in principle” that one might find such a proof.

By late December 1933 when he gave an invited lecture to the Mathematical As-
sociation of America in Cambridge (Massachusetts), Gödel had changed his views
significantly. In the text for his lecture, [Gödel, 1933], he sharply distinguishes in-
tuitionist from finitist arguments, the latter constituting the most restrictive form
of constructive mathematics. He insists that the known finitist arguments given by
“Hilbert and his disciples” can all be carried out in a certain system A. Proofs in
A, he asserts, “can be easily expressed in the system of classical analysis and even
in the system of classical arithmetic, and there are reasons for believing that this
will hold for any proof which one will ever be able to construct”. This observation
and the second incompleteness theorem imply, as sketched above, that classical
arithmetic cannot be shown to be consistent by finitist means. The system A is
similar to the quantifier-free part of Herbrand’s system F*, except that the prov-
able totality for functions in F is not mentioned and that A is also concerned
with other inductively defined classes.16 Gödel’s reasons for conjecturing that A
contains all finitist arguments are not made explicit.

Gödel discusses then a theorem of Herbrand’s, which he considers to be the most
far-reaching among interesting partial results in the pursuit of Hilbert’s consistency
program. He does so, as if to answer the question “How do current consistency
proofs fare?” and formulates the theorem in this lucid and elegant way: “If we

16The restrictive characteristics of the system A are formulated on pp. 23 and 24 of [1933]
and include the requirement that notions have to be decidable and functions must be calculable.
Gödel claims that “such notions and functions can always be defined by complete induction”.
Definition by complete induction is to be understood as definition by recursion, which — for the
integers — is not restricted to primitive recursion. The latter claim is supported by the context
of the lecture and also by Gödel’s remark at the very beginning of section 9 in his Princeton
Lectures, where he explains that a version of the Ackermann function is “defined inductively”.
The actual definition is considered “as an example of a definition by induction with respect to
two variables simultaneously”. That is followed by the remark, “The consideration of various
sorts of functions defined by induction leads to the question what one would mean by ‘every
recursive function’.”
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take a theory which is constructive in the sense that each existence assertion made
in the axioms is covered by a construction, and if we add to this theory the non-
constructive notion of existence and all the logical rules concerning it, e.g., the law
of excluded middle, we shall never get into any contradiction.” (This implies di-
rectly the extension of Hilbert’s first consistency result from 1921/22 to the theory
obtained from it by adding full classical first order logic, but leaving the induc-
tion principle quantifier-free.) Gödel conjectures that Herbrand’s method might
be generalized, but he emphasizes that “for larger systems containing the whole
of arithmetic or analysis the situation is hopeless if you insist upon giving your
proof for freedom from contradiction by means of the system A”. As the system
A is essentially the quantifier-free part of F*, it is clear that Gödel now takes
Herbrand’s position concerning the impact of his second incompleteness theorem
on Hilbert’s Program.

Nowhere in the correspondence does the issue of general computability arise.
Herbrand’s discussion, in particular, is solely trying to explore the limits that are
imposed on consistency proofs by the second theorem. Gödel’s response focuses
also on that very topic. It seems that he subsequently developed a more critical
perspective on the character and generality of his theorems. This perspective
allowed him to see a crucial open question and to consider Herbrand’s notion of
a finitist function as a first step towards an answer. A second step was taken in
1934 when Gödel lectured on his incompleteness theorems at Princeton. There one
finds not only an even more concise definition of the class of primitive recursive
functions, but also a crucial and revealing remark as to the pragmatic reason for
the choice of this class of functions.

The very title of the lectures, On undecidable propositions of formal mathe-
matical systems, indicates that Gödel wanted to establish his theorems in greater
generality, not just for Principia Mathematica and related systems. In the intro-
duction he attempts to characterize “formal mathematical system” by requiring
that the rules of inference, and the definitions of meaningful [i.e., syntactically
well-formed] formulas and axioms, be “constructive”; Gödel elucidates the latter
concept as follows:

. . . for each rule of inference there shall be a finite procedure for de-
termining whether a given formula B is an immediate consequence
(by that rule) of given formulas A1, . . .An, and there shall be a finite
procedure for determining whether a given formula A is a meaningful
formula or an axiom. (p. 346)

That is of course informal and imprecise, mathematically speaking. The issue is
addressed in section 7, where Gödel discusses conditions a formal system must
satisfy so that the arguments for the incompleteness theorems apply to it. The
first of five conditions is this:

Supposing the symbols and formulas to be numbered in a manner sim-
ilar to that used for the particular system considered above, then the
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class of axioms and the relation of immediate consequence shall be
recursive (i.e., in these lectures, primitive recursive).

This is a precise condition which in practice suffices as a substitute
for the unprecise requirement of §1 that the class of axioms and the
relation of immediate consequence be constructive. (p. 361)17

A principled precise condition for characterizing formal systems in general is
needed. Gödel defines in §9 the class of “general recursive functions”; that is
Gödel’s second step alluded to above and the focus of the next section.

3 RECURSIVENESS AND CHURCH’S THESIS

In Section 2 I described the emergence of a broad concept of calculable function. It
arose out of a mathematical practice that was concerned with effectiveness of solu-
tions, procedures and notions; it was also tied in important ways to foundational
discussions that took place already in the second half of the 19th century with even
older historical roots. I pointed to the sharply differing perspectives of Dedekind
and Kronecker. It was the former who formulated in his [1888] the schema of
primitive recursion in perfect generality. That all the functions defined in this way
are calculable was of course clear, but not the major issue for Dedekind: he estab-
lished that primitive recursive definitions determine unique functions in his logicist
framework. From a constructive perspective, however, these functions have an au-
tonomous significance and were used in the early work of Hilbert and Bernays,
but also of Skolem, for developing elementary arithmetic in a deeply Kroneckerian
spirit. Hilbert and Bernays viewed this as a part of finitist mathematics, their
framework for meta-mathematical studies in general and for consistency proofs in
particular.

An inductive specification of the class of primitive recursive functions is found in
the Zwischenbetrachtung of section 3 in Gödel’s [1931] and, even more standardly,
in the second section of his [1934]. That section is entitled “Recursive functions
and relations.” In a later footnote Gödel pointed out that “recursive” in these
lectures corresponds to “primitive recursive” as used now. It was a familiar fact
by then that there are calculable functions, which are not in the class of primitive
recursive functions, with Ackermann’s and Sudan’s functions being the best-known
examples. Ackermann’s results were published only in 1928, but they had been
discussed extensively already earlier, e.g., in Hilbert’s On the infinite. Herbrand’s
schema from 1931 defines a broad class of finitistically calculable functions includ-
ing the Ackermann function; it turned out to be the starting-point of significant
further developments.

Herbrand’s schema is a natural generalization of the definition schemata for
calculable functions that were known to him and built on the practice of the

17In the Postscriptum to [Gödel, 1934] Gödel asserts that exactly this condition can be removed
on account of Turing’s work.



552 Wilfried Sieg

Hilbert School. It could also be treated easily by the methods for proving the
consistency of weak systems of arithmetic Herbrand had developed in his thesis.
In a letter to Bernays of 7 April 1931, the very day on which he also wrote to Gödel,
Herbrand contrasts his consistency proof with Ackermann’s, which he mistakenly
attributes to Bernays:

In my arithmetic the axiom of complete induction is restricted, but
one may use a variety of other functions than those that are defined
by simple recursion: in this direction, it seems to me, that my theorem
goes a little farther than yours [i.e., than Ackermann’s].

The point that is implicit in my earlier discussion should be made explicit here
and be contrasted with discussions surrounding Herbrand’s schema by Gödel and
van Heijenoort as to the programmatic direction of the schema18: the above is
hardly a description of a class of functions that is deemed to be of fundamental
significance for the question of “general computability”. Rather, Herbrand’s re-
mark emphasizes that his schema captures a broader class of finitist functions and
should be incorporated into the formal theory to be shown consistent.

Gödel considered the schema, initially and in perfect alignment with Herbrand’s
view, as a way of partially capturing the constructive aspect of mathematical
practice. It is after all the classical theory of arithmetic with Herbrand’s schema
that is reduced to its intuitionistic version by Gödel in his [1933]; this reductive
result showed that intuitionism provides a broader constructive framework than
finitism. I will detail the modifications Gödel made to Herbrand’s schema when
introducing in [1934] the general recursive functions. The latter are the primary
topic of this section, and the main issues for our discussion center around Church’s
Thesis.

3.1 Relative consistency

Herbrand proved in his [1931a], as I detailed above and at the end of section 2.4, the
consistency of a system for classical arithmetic that included defining equations
for all the finitistically calculable functions identified by his schema, but made
the induction principle available only for quantifier-free formulas. In a certain
sense that restriction is lifted in Gödel’s [1933], where an elementary translation
of full classical arithmetic into intuitionistic arithmetic is given. A system for
intuitionistic arithmetic had been formulated in [Heyting, 1930a]. Gödel’s central
claim in the paper is this: If a formula A is provable in Herbrand’s system for
classical arithmetic, then its translation A∗ is provable in Heyting arithmetic. A∗

is obtained from A by transforming the latter into a classically equivalent formula
not containing ∨,→, (∃). The crucial auxiliary lemmata are the following:

18Van Heijenoort analyzed the differences between Herbrand’s published proposals and the
suggestion that had been made, according to [Gödel, 1934], by Herbrand in his letter to Gödel.
References to this discussion in light of the actual letter are found in my paper [1994]; see in
particular section 3.2 and the Appendix.
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(i) For all formulas A∗, Heyting arithmetic proves ¬¬A∗ → A∗; and

(ii) For all formulas A∗ and B∗, Heyting arithmetic proves that A∗ → B∗ is
equivalent to ¬(A∗&¬B∗)

The theorem establishes obviously the consistency of classical arithmetic relative
to Heyting arithmetic. If the statement 0=1 were provable in classical arithmetic,
then it would be provable in Heyting arithmetic, as (0=1)* is identical to 0=1.
From an intuitionistic point of view, however, the principles of Heyting arithmetic
can’t lead to a contradiction. Gödel concludes his paper by saying (p. 294 in
Collected Works I ):

The above considerations provide of course an intuitionistic consistency
proof for classical arithmetic and number theory. However, the proof is
not “finitist” in the sense Herbrand gave to the term, following Hilbert.

This implies a clear differentiation of intuitionistic from finitist mathematics, and
the significance of this result cannot be overestimated. Ironically, it provided a
basis and a positive direction for modifying Hilbert’s Program: exploit in consis-
tency proofs the constructive means of intuitionistic mathematics that go beyond
finitist ones. Gödel’s result is for that very reason important and was obtained,
with a slightly different argument, also by Gentzen. The historical point is made
forcefully by Bernays in his contribution on Hilbert to the Encyclopedia of Philos-
ophy ; the systematic point, and its relation to the further development of proof
theory, has been made often in the context of a generalized reductive program in
the tradition of the Hilbert school; see, for example, [Sieg and Parsons, 1995] or
my [2002].

I discuss Gödel’s result for two additional reasons, namely, to connect the spe-
cific developments concerning computability with the broader foundational consid-
erations of the time and to make it clear that Gödel was thoroughly familiar with
Herbrand’s formulation when he gave the definition of “general recursive functions”
in his 1934 Princeton Lectures. Herbrand’s schema is viewed, in the reductive con-
text, from the standpoint of constructive mathematical practice as opposed to its
meta-mathematical use in the description of “formal theories”. That is made clear
by Gödel’s remark, “The definition of number-theoretic functions by recursion is
unobjectionable for intuitionism as well (see H2, 10.03, 10.04). Thus all functions
fi (Axiom Group C) occur also in intuitionistic mathematics, and we consider
the formulas defining them to have been adjoined to Heyting’s axioms;. . . ”19 The
meta-mathematical, descriptive use will become the focus of our investigation, as
the general characterization of “formal systems” takes center stage and is pur-
sued via an explication of “constructive” or “effective” procedures. We will then
take on the problem of identifying an appropriate mathematical concept for this
informal notion, i.e., issues surrounding Church’s or Turing’s Thesis. To get a

19Collected Works I, p. 290. The paper H2 is [Heyting, 1930a], and the numbers 10.03 and
10.04 refer to not more and not less than the recursion equations for addition.
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concrete perspective on the significance of the broad issues, let me mention claims
formulated by Church and Gödel with respect to Turing’s work, but also point to
tensions and questions that are only too apparent.

Church reviewed Turing’s On computable numbers for the Journal of Symbolic
Logic just a few months after its publication. He contrasted Turing’s notion for
effective calculability (via idealized machines) with his own (via λ-definability)
and with Gödel’s (via the equational calculus). “Of these [notions],” Church re-
marked, “the first has the advantage of making the identification with effectiveness
in the ordinary (not explicitly defined) sense evident immediately. . . ” Neither in
this review nor anywhere else did Church give reasons, why the identification is
immediately evident for Turing’s notion, and why it is not for the others. In con-
trast, Gödel seemed to capture essential aspects of Turing’s considerations when
making a brief and enigmatic remark in the 1964 postscript to the Princeton Lec-
tures he had delivered thirty years earlier: “Turing’s work gives an analysis of the
concept of ‘mechanical procedure’. . . This concept is shown to be equivalent with
that of a ‘Turing machine’.”20 But neither in this postscript nor in other writings
did Gödel indicate the nature of Turing’s analysis and prove that the analyzed
concept is indeed equivalent to that of a Turing machine.

Gödel underlined the significance of Turing’s analysis, repeatedly and emphat-
ically. He claimed, also in [1964], that only Turing’s work provided “a precise and
unquestionably adequate definition of the general concept of formal system”. As
a formal system is for Gödel just a mechanical procedure for producing theorems,
the adequacy of this definition rests squarely on the correctness of Turing’s anal-
ysis of mechanical procedures. The latter lays the ground for the most general
mathematical formulation and the broadest philosophical interpretation of the in-
completeness theorems. Gödel himself had tried to arrive at an adequate concept
in a different way, namely, by directly characterizing calculable number theoretic
functions more general than primitive recursive ones. As a step towards such a
characterization, Gödel introduced in his Princeton Lectures “general recursive
functions” via his equational calculus “using” Herbrand’s schema. I will now dis-
cuss the crucial features of Gödel’s definition and contrast it with Herbrand’s as
discussed in Section 2.4.

3.2 Uniform calculations

In his Princeton Lectures, Gödel strove to make the incompleteness results less
dependent on particular formalisms. Primitive recursive definability of axioms
and inference rules was viewed as a “precise condition, which in practice suffices
as a substitute for the unprecise requirement of §1 that the class of axioms and the
relation of immediate consequence be constructive”. A notion that would suffice
in principle was needed, however, and Gödel attempted to arrive at a more general

20Gödel’s Collected Works I, pp. 369–70. The emphases are mine. — In the context of this
paper and reflecting the discussion of Church and Gödel, I consider effective and mechanical
procedure as synonymous.
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notion. Gödel considers the fact that the value of a primitive recursive function
can be computed by a finite procedure for each set of arguments as an “important
property” and adds in footnote 3:

The converse seems to be true if, besides recursions according to the
scheme (2) [i.e., primitive recursion as given above], recursions of other
forms (e.g., with respect to two variables simultaneously) are admitted.
This cannot be proved, since the notion of finite computation is not
defined, but it can serve as a heuristic principle.

What other recursions might be admitted is discussed in the last section of the
Notes under the heading “general recursive functions”.

The general recursive functions are taken by Gödel to be those number theoretic
functions whose values can be calculated via elementary substitution rules from
an extended set of basic recursion equations. This is an extremely natural ap-
proach and properly generalizes primitive recursiveness: the new class of functions
includes of course all primitive recursive functions and also those of the Acker-
mann type, defined by nested recursion. Assume, Gödel suggests, you are given a
finite sequence ψ1, . . . , ψk of “known” functions and a symbol φ for an “unknown”
one. Then substitute these symbols “in one another in the most general fashions”
and equate certain pairs of the resulting expressions. If the selected set of func-
tional equations has exactly one solution, consider φ as denoting a “recursive”
function.21 Gödel attributes this broad proposal to define “recursive” functions
mistakenly to Herbrand and proceeds then to formulate two restrictive conditions
for his definition of “general recursive” functions:

(1) the l.h.s. of equations is of the form φ(ψi1(x1, . . . , xn), . . . , ψil
(x1, . . . , xn)),

and

(2) for every l-tuple of natural numbers the value of φ is “computable in a
calculus”.

The first condition just stipulates a standard form of certain terms, whereas the
important second condition demands that for every l-tuple k1, . . . , kl there is ex-
actly one m such that φ(k1, . . . , kl) = m is a “derived equation”. The set of
derived equations is specified inductively via elementary substitution rules; the
basic clauses are:

(A.1) All numerical instances of a given equation are derived equations;

(A.2) All true equalities ψij
(x1, . . . , xn) = m are derived equations.

The rules allowing steps from already obtained equations to additional ones are
formulated as follows:

21Kalmar proved in his [1955] that these “recursive” functions, just satisfying recursion equa-
tions, form a strictly larger class than the general recursive ones.
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(R.1) Replace occurrences of ψij
(x1, . . . , xn) bym, if ψij

(x1, . . . , xn) =
m is a derived equation;

(R.2) Replace occurrences of φ(x1, . . ., xl) on the right-hand side of a
derived equation by m, if φ(x1, . . ., xl) = m is a derived equation.

In addition to restriction (1) on the syntactic form of equations, we should
recognize with Gödel two novel features in this definition when comparing it to
Herbrand’s: first, the precise specification of mechanical rules for deriving equa-
tions, i.e., for carrying out numerical computations; second, the formulation of
the regularity condition requiring computable functions to be total, but without
insisting on a finitist proof. These features were also emphasized by Kleene who
wrote with respect to Gödel’s definition that “it consists in specifying the form
of the equations and the nature of the steps admissible in the computation of
the values, and in requiring that for each given set of arguments the computation
yield a unique number as value” [Kleene, 1936, 727]. Gödel reemphasized these
points in later remarks, when responding to van Heijenoort’s inquiry concerning
the precise character of Herbrand’s suggestion.

In a letter to van Heijenoort of 14 August 1964 Gödel asserts “it was exactly by
specifying the rules of computation that a mathematically workable and fruitful
concept was obtained”. When making this claim Gödel took for granted that Her-
brand’s suggestion had been “formulated exactly as on page 26 of my lecture notes,
i.e., without reference to computability”. At that point Gödel had to rely on his
recollection, which, he said, “is very distinct and was still very fresh in 1934”. On
the evidence of Herbrand’s letter, it is clear that Gödel misremembered. This is
not to suggest that Gödel was wrong in viewing the specification of computation
rules as extremely important, but rather to point to the absolutely crucial step he
had taken, namely, to disassociate general recursive functions from the epistemo-
logically restricted notion of proof that is involved in Herbrand’s formulation.

Gödel dropped later the regularity condition altogether and emphasized, “that
the precise notion of mechanical procedures is brought out clearly by Turing ma-
chines producing partial rather than general recursive functions.” At the earlier
juncture in 1934 the introduction of the equational calculus with particular compu-
tation rules was important for the mathematical development of recursion theory
as well as for the underlying conceptual motivation. It brought out clearly, what
Herbrand — according to Gödel in his letter to van Heijenoort — had failed to
see, namely “that the computation (for all computable functions) proceeds by ex-
actly the same rules”. Gödel was right, for stronger reasons than he put forward,
when he cautioned in the same letter that Herbrand had foreshadowed, but not
introduced, the notion of a general recursive function. Cf. the discussion in and of
[Gödel, 193?] presented in Section 6.1.

Kleene analyzed the class of general recursive functions in his [1936] using
Gödel’s arithmetization technique to describe provability in the equational cal-
culus. The uniform and effective generation of derived equations allowed Kleene
to establish an important theorem that is most appropriately called “Kleene’s nor-
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mal form theorem”: for every recursive function ϕ there are primitive recursive
functions ψ and ρ such that ϕ(x1, . . ., xn) equals ψ(εy.ρ(x1, . . ., xn, y) = 0), where
for every n-tuple x1, . . ., xn there is a y such that ρ(x1, . . ., xn, y) = 0. The latter
equation expresses that y is (the code of) a computation from the equations that
define ϕ for the arguments x1, . . ., xn. The term εy.ρ(x1, . . ., xn, y) = 0 provides
the smallest y, such that ρ(x1, . . ., xn, y) = 0, if there is a y for the given argu-
ments, and it yields 0 otherwise. Finally, the function ψ considers the last equation
in the selected computation and determines the numerical value of the term on
the r.h.s of that equation — which is a numeral and represents the value of ϕ for
given arguments x1, . . ., xn. This theorem (or rather its proof) is quite remarkable:
the ease with which “it” allows to establish equivalences of different computability
formulations makes it plausible that some stable notion has been isolated. What
is needed for the proof is only that the inference or computation steps are all prim-
itive recursive. Davis observes in his [1982, 11] quite correctly, “The theorem has
made equivalence proofs for formalisms in recursive function theory rather rou-
tine, . . . ” The informal understanding of the theorem is even more apparent from
Kleene’s later formulation involving his T-predicate and result-extracting function
U ; see for example his Introduction to Metamathematics, p. 288 ff.

Hilbert and Bernays had introduced in the first volume of their Grundlagen der
Mathematik a µ-operator that functioned in just the way the ε-operator did for
Kleene. The µ-notation was adopted later also by Kleene and is still being used in
computability theory. Indeed, the µ-operator is at the heart of the definition of the
class of the so-called “µ-recursive functions”. They are specified inductively in the
same way as the primitive recursive functions, except that a third closure condition
is formulated: if ρ(x1, . . ., xn, y) is µ-recursive and for every n-tuple x1, . . ., xn

there is a y such that ρ(x1, . . ., xn, y) = 0, then the function θ(x1, . . ., xn) given by
µy.ρ(x1, . . ., xn, y) = 0 is also µ-recursive. The normal form theorem is the crucial
stepping stone in proving that this class of functions is co-extensional with that
of Gödel’s general recursive ones.

This result was actually preceded by the thorough investigation of λ-definability
by Church, Kleene and Rosser.22 Kleene emphasized in his [1987, 491], that the
approach to effective calculability through λ-definability had “quite independent
roots (motivations)” and would have led Church to his main results “even if Gödel’s
paper [1931] had not already appeared”. Perhaps Kleene is right, but I doubt it.
The flurry of activity surrounding Church’s A set of postulates for the foundation
of logic (published in 1932 and 1933) is hardly imaginable without knowledge of
Gödel’s work, in particular not without the central notion of representability and,
as Kleene points out, the arithmetization of meta-mathematics. The Princeton
group knew of Gödel’s theorems since the fall of 1931 through a lecture of von
Neumann’s. Kleene reports in [1987, 491], that through this lecture “Church and
the rest of us first learned of Gödel’s results”. The centrality of representability

22For analyses of the quite important developments in Princeton from 1933 to 1937 see [Davis,
1982] and my [1997], but of course also the accounts given by Kleene and Rosser. [Crossley,
1975a] contains additional information from Kleene about this time.
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for Church’s considerations comes out clearly in his lecture on Richard’s paradox
given in December 1933 and published as [Church, 1934]. According to [Kleene,
1981, 59] Church had formulated his thesis for λ-definability already in the fall of
1933; so it is not difficult to read the following statement as an extremely cautious
statement of the thesis:

. . . it appears to be possible that there should be a system of sym-
bolic logic containing a formula to stand for every definable function
of positive integers, and I fully believe that such systems exist.23

One has only to realize from the context that (i) ‘definable’ means ‘constructively
definable’, so that the value of the functions can be calculated, and (ii) ‘to stand
for’ means ‘to represent’.

A wide class of calculable functions had been characterized by the concept intro-
duced by Gödel, a class that contained all known effectively calculable functions.
Footnote 3 of the Princeton Lectures I quoted earlier seems to express a form
of Church’s Thesis. In a letter to Martin Davis of 15 February 1965, Gödel em-
phasized that no formulation of Church’s Thesis is implicit in that footnote. He
wrote:

. . . The conjecture stated there only refers to the equivalence of “finite
(computation) procedure” and “recursive procedure”. However, I was,
at the time of these lectures, not at all convinced that my concept of
recursion comprises all possible recursions; and in fact the equivalence
between my definition and Kleene’s . . . is not quite trivial.

At that time in early 1934, Gödel was equally unconvinced by Church’s proposal
to identify effective calculability with λ-definability; he called the proposal “thor-
oughly unsatisfactory”. That was reported by Church in a letter to Kleene dated
29 November 1935 (and quoted in [Davis, 1982, 9]).

Almost a year later, Church comes back to his proposal in a letter to Bernays
dated 23 January 1935; he conjectures that the λ-calculus may be a system that
allows the representability of all constructively defined functions:

The most important results of Kleene’s thesis concern the problem of
finding a formula to represent a given intuitively defined function of
positive integers (it is required that the formula shall contain no other
symbols than λ, variables, and parentheses). The results of Kleene
are so general and the possibilities of extending them apparently so
unlimited that one is led to conjecture that a formula can be found
to represent any particular constructively defined function of positive
integers whatever. It is difficult to prove this conjecture, however, or
even to state it accurately, because of the difficulty in saying precisely
what is meant by “constructively defined”. A vague description can be

23[Church, 1934, 358]. Church assumed, clearly, the converse of this claim.
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given by saying that a function is constructively defined if a method
can be given by which its values could be actually calculated for any
particular positive integer whatever.

When Church wrote this letter, it was known in his group that all general recur-
sive functions are λ-definable; Church established in collaboration with Kleene the
converse by March 1935. (Cf. [Sieg, 1997, 156].) This mathematical equivalence
result and the quasi-empirical adequacy through Kleene’s and Rosser’s work pro-
vided the background for the public articulation of Church’s Thesis in the 1935
abstract to be discussed in the next subsection. The elementary character of the
steps in computations made the normal form theorem and the equivalence argu-
ment possible. In the more general setting of his 1936 paper, Church actually
tried to show that every informally calculable number theoretic function is indeed
general recursive.

3.3 Elementary steps

Church, Kleene and Rosser had thoroughly investigated Gödel’s notion and its
connection with λ-definability by the end of March 1935; Church announced his
thesis in a talk contributed to the meeting of the American Mathematical Society
in New York City on 19 April 1935. I quote the abstract of the talk in full.

Following a suggestion of Herbrand, but modifying it in an important
respect, Gödel has proposed (in a set of lectures at Princeton, N.J.,
1934) a definition of the term recursive function, in a very general
sense. In this paper a definition of recursive function of positive integers
which is essentially Gödel’s is adopted. And it is maintained that the
notion of an effectively calculable function of positive integers should
be identified with that of a recursive function, since other plausible
definitions of effective calculability turn out to yield notions that are
either equivalent to or weaker than recursiveness. There are many
problems of elementary number theory in which it is required to find
an effectively calculable function of positive integers satisfying certain
conditions, as well as a large number of problems in other fields which
are known to be reducible to problems in number theory of this type. A
problem of this class is the problem to find a complete set of invariants
of formulas under the operation of conversion (see abstract 41.5.204).
It is proved that this problem is unsolvable, in the sense that there is
no complete set of effectively calculable invariants.

General recursiveness served, perhaps surprisingly, as the rigorous concept in this
first published formulation of Church’s Thesis. The surprise vanishes, however,
when Rosser’s remark in his [1984] about this period is seriously taken into account:
“Church, Kleene, and I each thought that general recursivity seemed to embody
the idea of effective calculability, and so each wished to show it equivalent to λ-
definability” (p. 345). Additionally, when presenting his [1936a] to the American
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Mathematical Society on 1 January 1936, Kleene made these introductory remarks
(on p. 544): “The notion of a recursive function, which is familiar in the special
cases associated with primitive recursions, Ackermann-Péter multiple recursions,
and others, has received a general formulation from Herbrand and Gödel. The
resulting notion is of especial interest, since the intuitive notion of a ‘constructive’
or ‘effectively calculable’ function of natural numbers can be identified with it very
satisfactorily.” λ-definability was not even mentioned.

In his famous 1936 paper An unsolvable problem of elementary number theory
Church described the form of number theoretic problems to be shown unsolvable
and restated his proposal for identifying the class of effectively calculable functions
with a precisely defined class:

There is a class of problems of elementary number theory which can
be stated in the form that it is required to find an effectively calculable
function f of n positive integers, such that f(x1, x2, . . ., xn) = 2 is a
necessary and sufficient condition for the truth of a certain proposition
of elementary number theory involving x1, x2, . . ., xn as free variables.
. . .

The purpose of the present paper is to propose a definition of effective
calculability which is thought to correspond satisfactorily to the some-
what vague intuitive notion in terms of which problems of this class
are often stated, and to show, by means of an example, that not every
problem of this class is solvable. [f is the characteristic function of the
proposition; that 2 is chosen to indicate ‘truth’ is, as Church remarked,
accidental and non-essential.] (pp. 345–6)

Church’s arguments in support of his proposal used again recursiveness; the fact
that λ-definability was an equivalent concept added “. . . to the strength of the
reasons adduced below for believing that they [these precise concepts] constitute as
general a characterization of this notion [i.e. effective calculability] as is consistent
with the usual intuitive understanding of it.” (footnote 3, p. 90) Church claimed
that those reasons, to be presented and examined in the next paragraph, justify
the identification “so far as positive justification can ever be obtained for the
selection of a formal definition to correspond to an intuitive notion”. (p. 100)
Why was there a satisfactory correspondence for Church? What were his reasons
for believing that the most general characterization of effective calculability had
been found?

To give a deeper analysis Church pointed out, in section 7 of his paper, that
two methods to characterize effective calculability of number-theoretic functions
suggest themselves. The first of these methods uses the notion of “algorithm”,
and the second employs the notion of “calculability in a logic”. He argues that
neither method leads to a definition that is more general than recursiveness. Since
these arguments have a parallel structure, I discuss only the one pertaining to
the second method. Church considers a logic L, that is a system of symbolic logic
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whose language contains the equality symbol =, a symbol { }( ) for the application
of a unary function symbol to its argument, and numerals for the positive integers.
For unary functions F he gives the definition:

F is effectively calculable if and only if there is an expression f in the
logic L such that: {f}(µ) = ν is a theorem of L iff F (m) = n; here, µ
and ν are expressions that stand for the positive integers m and n.

Church claims that F is recursive, assuming that L satisfies certain conditions
which amount to requiring the theorem predicate of L to be recursively enumer-
able. Clearly, for us the claim then follows immediately by an unbounded search.

To argue for the recursive enumerability of L’s theorem predicate, Church starts
out by formulating conditions any system of logic has to satisfy if it is “to serve at
all the purposes for which a system of symbolic logic is usually intended”. These
conditions, Church notes in footnote 21, are “substantially” those from Gödel’s
Princeton Lectures for a formal mathematical system, I mentioned at the end of
section 2.4. They state that (i) each rule must be an effectively calculable opera-
tion, (ii) the set of rules and axioms (if infinite) must be effectively enumerable,
and (iii) the relation between a positive integer and the expression which stands
for it must be effectively determinable. Church supposes that these conditions can
be “interpreted” to mean that, via a suitable Gödel numbering for the expressions
of the logic, (i′) each rule must be a recursive operation, (ii′) the set of rules and
axioms (if infinite) must be recursively enumerable, and (iii′) the relation between
a positive integer and the expression which stands for it must be recursive. The
theorem predicate is then indeed recursively enumerable; but the crucial interpre-
tative step is not argued for at all and thus seems to depend on the very claim
that is to be established.

Church’s argument in support of the thesis may appear to be viciously circular;
but that would be too harsh a judgment. After all, the general concept of cal-
culability is explicated by that of derivability in a logic, and Church uses (i′) to
(iii′) to sharpen the idea that in a logical formalism one operates with an effective
notion of immediate consequence.24 The thesis is consequently appealed to only
in a more special case. Nevertheless, it is precisely here that we encounter the
major stumbling block for Church’s analysis, and that stumbling block was quite
clearly seen by Church. To substantiate the latter observation, let me modify a
remark Church made with respect to the first method of characterizing effectively
calculable functions: If this interpretation [what I called the “crucial interpretative
step” in the above argument] or some similar one is not allowed, it is difficult to
see how the notion of a system of symbolic logic can be given any exact meaning
at all.25 Given the crucial role this remark plays, it is appropriate to view and to

24Compare footnote 20 on p. 101 of [Church, 1936] where Church remarks: “In any case where
the relation of immediate consequence is recursive it is possible to find a set of rules of procedure,
equivalent to the original ones, such that each rule is a (one-valued) recursive operation, and the
complete set of rules is recursively enumerable.”

25The remark is obtained from footnote 19 of [Church, 1936, 101] by replacing “an algorithm”
by “a system of symbolic logic”.
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formulate it as a normative requirement:

Church’s central thesis. The steps of any effective procedure (governing deriva-
tions of a symbolic logic) must be recursive.

If this central thesis is accepted and a function is defined to be effectively calculable
if, and only if, it is calculable in a logic, then what Robin Gandy called Church’s
“step-by-step argument” proves that all effectively calculable functions are re-
cursive. These considerations can be easily adapted to Church’s first method of
characterizing effectively calculable functions via algorithms and provide another
perspective for the “selection of a formal definition to correspond to an intuitive
notion”. The detailed reconstruction of Church’s argument pinpoints the crucial
difficulty and shows, first of all, that Church’s methodological attitude is quite
sophisticated and, secondly, that at this point in 1936 there is no major difference
from Gödel’s position. (A rather stark contrast is painted in [Davis, 1982] as well
as in [Shapiro, 1991] and is quite commonly assumed.) These last points are sup-
ported by the directness with which Church recognized, in writing and early in
1937, the importance of Turing’s work as making the identification of effectiveness
and (Turing) computability “immediately evident”.

3.4 Absoluteness

How can Church’s Thesis be supported? — Let me first recall that Gödel defined
the class of general recursive functions after discussion with Church and in response
to Church’s “thoroughly unsatisfactory” proposal to identify the effectively calcu-
lable functions with the λ-definable ones. Church published the thesis, as we saw,
only after having done more mathematical work, in particular, after having es-
tablished with Kleene the equivalence of general recursiveness and λ-definability.
Church gives then two reasons for the thesis, namely, (i) the quasi-empirical ob-
servation that all known calculable functions can be shown to be general recursive,
the argument from coverage and (ii) the mathematical fact of the equivalence of
two differently motivated notions, the argument from confluence. A third reason
comes directly from the 1936 paper and was discussed in the last subsection, (iii)
the step-by-step argument from a core conception.

Remark. There are additional arguments of a more mathematical character in
the literature. For example, in the Postscriptum to [1934] Gödel asserts that the
question raised in footnote 3 of the Princeton Lectures, whether his concept of
recursion comprises all possible recursions, can be “answered affirmatively” for
recursiveness as given in section 10 “which is equivalent with general recursive-
ness as defined today”. As to the contemporary definition he seems to point to
µ-recursiveness. How could that definition convince Gödel that all possible recur-
sions are captured? How could the normal form theorem, as Davis suggests in his
[1982, 11], go “a considerable distance towards convincing Gödel” that all possible
recursions are comprised by his concept of recursion? It seems to me that argu-
ments answering these questions require crucially an appeal to Church’s central
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thesis and are essentially reformulations of his semi-circular argument. That holds
also for the appeal to the recursion theorem26 in Introduction to Metamathematics,
p. 352, when Kleene argues “Our methods . . . are now developed to the point
where they seem adequate for handling any effective definition of a function which
might be proposed.” After all, in the earlier discussion on p. 351 Kleene asserts:
“We now have a general kind of ‘recursion’, in which the value ϕ(x1, . . ., xn) can be
expressed as depending on other values of the same function in a quite arbitrary
manner, provided only that the rule of dependence is describable by previously
treated effective methods.” Thus, to obtain a mathematical result, the “previ-
ously treated effective methods” must be identified via Church’s central thesis
with recursive ones. (End of Remark.)

All these arguments are in the end unsatisfactory. The quasi-empirical observa-
tion could be refuted tomorrow, as we might discover a function that is calculable,
but not general recursive. The mathematical fact by itself is not convincing, as
the ease with which the considerations underlying the proof of the normal form
theorem allow one to prove equivalences shows a deep family resemblance of the
different notions. The question, whether one or any of the rigorous notions cor-
responds to the informal concept of effective calculability, has to be answered
independently. Finally, as to the particular explication via the core concept “cal-
culability in a logic”, Church’s argument appeals semi-circularly to a restricted
version of the thesis. A conceptual reduction has been achieved, but a mathemat-
ically convincing result only with the help of the central thesis. Before discussing
Post’s and Turing’s reflections concerning calculability in the next section, I will
look at important considerations due to Gödel and Hilbert and Bernays, respec-
tively.

The concept used in Church’s argument is extremely natural for number the-
oretic functions and is directly related to “Entscheidungsdefinitheit” for relations
and classes introduced by Gödel in his [1931] as well as to the representability
of functions used in his Princeton Lectures. The rules of the equational calculus
allow the mechanical computation of the values of calculable functions; they must
be contained in any system S that is adequate for number theory. Gödel made
an important observation in the addendum to his brief 1936 note On the length
of proofs. Using the general notion “f is computable in a formal system S” he
considers a hierarchy of systems Si (of order i, 1 ≤ i) and observes that this no-
tion of computability is independent of i in the following sense: If a function is
computable in any of the systems Si, possibly of transfinite order, then it is al-
ready computable in S1. “Thus”, Gödel concludes, “the notion ‘computable’ is in
a certain sense ‘absolute,’ while almost all meta-mathematical notions otherwise
known (for example, provable, definable, and so on) quite essentially depend upon
the system adopted.” For someone who stressed the type-relativity of provability
as strongly as Gödel, this was a very surprising insight.

At the Princeton Bicentennial Conference in 1946 Gödel stressed the special

26In [Crossley, 1975a, 7], Kleene asserts that he had proved this theorem before June of 1935.
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importance of general recursiveness or Turing computability and emphasized (Col-
lected Works II, p. 150):

It seems to me that this importance is largely due to the fact that
with this concept one has for the first time succeeded in giving an
absolute definition of an interesting epistemological notion, i.e., one
not depending on the formalism chosen.

In the footnote added to this remark in 1965, Gödel formulated the mathematical
fact underlying his claim that an absolute definition had been obtained, namely,
“To be more precise: a function of integers is computable in any formal system
containing arithmetic if and only if it is computable in arithmetic, where a func-
tion f is called computable in S if there is in S a computable term representing
f .” Thus not just higher-type extensions are considered now, but any theory that
contains arithmetic, for example set theory. Tarski’s remarks at this conference,
only recently published in [Sinaceur, 2000], make dramatically vivid, how impor-
tant the issue of the “intuitive adequacy” of general recursiveness was taken to
be. The significance of his 1935 discovery was described by Gödel in a letter to
Kreisel of 1 May 1968: “That my [incompleteness] results were valid for all possi-
ble formal systems began to be plausible for me (that is since 1935) only because
of the Remark printed on p. 83 of ‘The Undecidable’ . . . But I was completely
convinced only by Turing’s paper.”27

If Gödel had been completely convinced of the adequacy of this notion at that
time, he could have established the unsolvability of the decision problem for first-
order logic. Given that mechanical procedures are exactly those that can be com-
puted in the system S1 or any other system to which Gödel’s Incompleteness
Theorem applies, the unsolvability follows from Theorem IX of [Gödel, 1931]. The
theorem states that there are formally undecidable problems of predicate logic;
it rests on the observation made by Theorem X that every sentence of the form
(∀x)F (x), with F primitive recursive, can be shown in S1 to be equivalent to the
question of satisfiability for a formula of predicate logic. (This last observation
has to be suitably extended to general recursiveness.)

Coming back to the conclusion Gödel drew from the absoluteness, he is right
that the details of the formalisms extending arithmetic do not matter, but it is
crucial that we are dealing with formalisms at all; in other words, a precise aspect
of the unexplicated formal character of the extending theories has to come into
play, when arguing for the absoluteness of the concept computability. Gödel did
not prove that computability is an absolute concept, neither in [1946] nor in the
earlier note. I conjecture that he must have used considerations similar to those
for the proof of Kleene’s normal form theorem in order to convince himself of
the claim. The absoluteness was achieved then only relative to some effective

27In [Odifreddi, 1990, 65]. The content of Gödel’s note was presented in a talk on June 19,
1935. See [Davis, 1982, 15, footnote 17] and [Dawson, 1986, 39]. “Remark printed on p. 83”
refers to the remark concerning absoluteness that Gödel added in proof (to the original German
publication) and is found in [Davis, 1965, 83].
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description of the “formal” systems S and the stumbling block shows up exactly
here. If my conjecture is correct, then Gödel’s argument is completely parallel
to Church’s contemporaneous step-by-step argument for the co-extensiveness of
effective calculability and general recursiveness. Church required, when explicating
effective calculability as calculability in logical calculi, the inferential steps in such
calculi not only to be effective, but to be general recursive. Some such condition
is also needed for completing Gödel’s argument.

3.5 Reckonable functions

Church’s and Gödel’s arguments contain a hidden and semi-circular condition on
“steps”, a condition that allows their parallel arguments to go through. This step-
condition was subsequently moved into the foreground by Hilbert and Bernays’s
marvelous analysis of “calculations in deductive formalisms”. However, before dis-
cussing that work in some detail, I want to expose some broad considerations by
Church in a letter from 8 June 1937 to the Polish logician Josef Pepis. These con-
siderations (also related in a letter to Post on the same day) are closely connected
to Church’s explication in his [1936]; they defend the central thesis in an indirect
way and show how close his general conceptual perspective was to Gödel’s.

In an earlier letter to Church, Pepis had described his project of constructing
a number theoretic function that is effectively calculable, but not general recur-
sive. Church explained in his response why he is “extremely skeptical”. There
is, he asserts, a minimal condition for a function f to be effectively calculable
and “if we are not agreed on this then our ideas of effective calculability are so
different as to leave no common ground for discussion”. This minimal condition
is formulated as follows: for every positive integer a there must exist a positive
integer b such that the proposition f(a) = b has a “valid proof” in mathematics.
Indeed, Church argues, all existing mathematics is formalizable in Principia Math-
ematica or in one of its known extensions; consequently there must be a formal
proof of a suitably chosen formal proposition. If f is not general recursive the
considerations of [Church, 1936] ensure that for every definition of f within the
language of Principia Mathematica there exists a positive integer a such that for
no b the formal proposition corresponding to f(a) = b is provable in Principia
Mathematica. Church claims that this holds not only for all known extensions,
but for “any system of symbolic logic whatsoever which to my knowledge has ever
been proposed”. To respect this quasi-empirical fact and satisfy the above minimal
condition, one would have to find “an utterly new principle of logic, not only never
before formulated, but also never before actually used in a mathematical proof”.

Moreover, and here is the indirect appeal to the recursivity of steps, the new
principle “must be of so strange, and presumably complicated, a kind that its
metamathematical expression as a rule of inference was not general recursive”,
and one would have to scrutinize the “alleged effective applicability of the principle
with considerable care”. The dispute concerning a proposed effectively calculable,
but non-recursive function would thus center for Church around the required new
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principle and its effective applicability as a rule of inference, i.e., what I called
Church’s central thesis. If the latter is taken for granted (implicitly, for example,
in Gödel’s absoluteness considerations), then the above minimal understanding
of effective calculability and the quasi-empirical fact of formalizability block the
construction of such a function. This is not a completely convincing argument, as
Church admits, but does justify his extreme skepticism of Pepis’s project. Church
states “this [skeptical] attitude is of course subject to the reservation that I may
be induced to change my opinion after seeing your work”. So, in a real sense
Church joins Gödel in asserting that in any “formal theory” (extending Principia
Mathematica) only general recursive functions can be computed.

Hilbert and Bernays provide in the second supplement28 to Grundlagen der
Mathematik II mathematical underpinnings for Gödel’s absoluteness claim and
Church’s arguments relative to their recursiveness conditions (“Rekursivitäts-
bedingungen”). They give a marvelous conceptual analysis and establish indepen-
dence from particular features of formalisms in an even stronger sense than Gödel.
The core notion of calculability in a logic is made directly explicit and a number-
theoretic function is said to be reckonable (“regelrecht auswertbar”) just in case
it is computable (in the above sense) in some deductive formalism. Deductive
formalisms must satisfy, however, three recursiveness conditions. The crucial one
is an analogue of Church’s central thesis and requires that the theorems of the
formalism can be enumerated by a primitive recursive function or, equivalently,
that the proof-predicate is primitive recursive. Then it is shown that a special
number theoretic formalism (included in Gödel’s S1) suffices to compute the reck-
onable functions, and that the functions computable in this particular formalism
are exactly the general recursive ones. Hilbert and Bernays’s analysis is a natural
capping of the development from Entscheidungsdefinitheit to an absolute notion of
computability, because it captures the informal notion of rule-governed evaluation
of number theoretic functions and explicitly isolates appropriate restrictive condi-
tions. But this analysis does not overcome the major stumbling block, it puts it
rather in plain view.

The conceptual work of Gödel, Church, Kleene and Hilbert and Bernays had
intimate historical connections and is still of genuine and deep interest. It ex-
plicated calculability of functions by one core notion, namely, computability of
their values in a deductive formalism via restricted elementary rules. But no one
gave convincing reasons for the proposed restrictions on the steps permitted in
computations. This issue was not resolved along Gödelian lines by generalizing
recursions, but by a quite different approach due to Alan Turing and, to some
extent, Emil Post. I reported in subsection 3.1 on Gödel’s assessment of Turing’s
work in the Postscriptum to the 1934 Princeton Lectures. That Postscriptum was
written on 3 June 1964; a few months earlier, on 28 August 1963, Gödel had for-
mulated a brief note for the publication of the translation of his [1931] in [van
Heijenoort, 1967]. That note is reprinted in Collected Works I (p. 195):

28The supplement is entitled, “Eine Präzisierung des Begriffs der berechenbaren Funktion und
der Satz von Church über das Entscheidungsproblem.”
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In consequence of later advances, in particular of the fact that due to
A. M. Turing’s work a precise and unquestionably adequate definition
of the general notion of formal system can now be given, a completely
general version of Theorems VI and XI is now possible. That is, it
can be proved rigorously that in every consistent formal system that
contains a certain amount of finitary number theory there exist unde-
cidable arithmetic propositions and that, moreover, the consistency of
any such system cannot be proved in the system.

To the first occurrence of “formal system” in this note Gödel attached a most
informative footnote and suggested in it that the term “formal system” should
never be used for anything but this notion. For example, the transfinite iterations
of formal systems he had proposed in his contribution to the Princeton Bicentennial
are viewed as “something radically different from formal systems in the proper
sense of the term”. The properly formal systems have the characteristic property
“that reasoning in them, in principle, can be completely replaced by mechanical
devices”. That connects back to the remark he had made in [1933a] concerning the
formalization of mathematics. The question is, what is it about Turing’s notion
that makes it an “unquestionably adequate definition of the general notion of
formal system”? My contention is that a dramatic shift of perspective overcame
the stumbling block for a fundamental conceptual analysis. Let us see what that
amounts to: Turing’s work is the central topic of the next section.

4 COMPUTATIONS AND COMBINATORY PROCESSES

We saw in the previous section that the work of Gödel, Church, Kleene and Hilbert
and Bernays explicated calculability of number-theoretic functions as computabil-
ity of their values in some deductive formalism via elementary steps. Church’s
direct argument for his thesis appeals to the central thesis asserting that the ele-
mentary steps in a computation (or deduction) should be recursive. There is no
reason given, why that is a correct or motivated requirement. However, if the cen-
tral thesis is accepted, then every effectively calculable function is indeed general
recursive.

In some sense of elementary, the steps in deductive formalisms are not ele-
mentary at all. Consider Gödel’s equational calculus contained in all of them: it
allows the substitution of variables by arbitrary numerals in one step, and arbi-
trarily complex terms can be replaced by their numerical values, again, in one step.
In general, a human calculator cannot carry out such mechanical steps without
subdividing them into more basic ones. It was a dramatic shift of perspective,
when Turing and Post formulated the most basic mechanical steps that underlie
the effective determination of values of number-theoretic functions, respectively
the execution of combinatory processes, and that can be carried out by a human
computing agent. This shift of perspective made for real progress; it is contiguous
with the other work, but it points the way towards overcoming, through Turing’s
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reflections, the stumbling block for a fundamental conceptual analysis.

In the first subsection, Machines and workers, I present the mechanical devices
or machines Turing introduced, and I’ll discuss Post’s human workers who oper-
ate robot-like in a “symbol space” of marked and unmarked boxes, carrying out
extremely simple actions. It is perhaps surprising that Turing’s model of compu-
tation, developed independently in the same year, is “identical”. In contrast to
Post, Turing investigated his machines systematically; that work resulted in the
discovery of the universal machine, the proof of the unsolvability of the halting
problem and, what is considered to be, the definitive resolution of the Entschei-
dungsproblem.

The contrast between the methodological approaches Post and Turing took is
prima facie equally surprising, if not even more remarkable. For Post it is a “work-
ing hypothesis” that all combinatory processes can be effected by the worker’s
actions, and it is viewed as being in need of continual verification. Turing took
the calculations of human computers as the starting-point of a detailed analysis
to uncover the underlying symbolic operations, appealing crucially to the agent’s
sensory limitations. These operations are so basic that they cannot be further sub-
divided and essentially are the operations carried out by Turing machines. The
general restrictive features can be formulated as boundedness and locality condi-
tions. The analysis is the topic of section 4.2 entitled Mechanical computors.

Turing’s reductive analysis will be critically examined in section 4.3 under the
heading Turing’s central thesis. Using Post’s later presentation of Turing ma-
chines we can simplify and sharpen the restrictive conditions, but also return to
the purely symbolic operations required for the general issues that were central be-
fore attention focused on the effective calculability of number theoretic functions.
Here we are touching on the central reason why Turing’s analysis is so appropri-
ate and leads to an adequate notion. However, Turing felt that his arguments
were mathematically unsatisfactory and thought, as late as 1954, that they had
to remain so. Before addressing this pivotal point in Section 5, I am going to
discuss in subsection 4.5 Church’s “machine interpretation” of Turing’s work, but
also Gandy’s proposal to characterize machine computability. Following Turing’s
broad approach, Gandy investigated in his [1980] the computations of machines
or, to indicate better the scope of that notion, of “discrete mechanical devices”.
According to Gandy, machines can, in particular, carry out parallel computations.
In spite of the great generality of his notion, Gandy was able to show that any
machine computable function is also Turing computable.

This section is focused on a sustained conceptual analysis of human computabil-
ity and contrasts it briefly with that of machine computability. Here lies the key
to answering the question, “What distinguishes Turing’s proposal so dramatically
from Church’s?” After all, the näıve examination of Turing machines hardly pro-
duces the conviction that Turing computability is provably equivalent to an ana-
lyzed notion of mechanical procedure (as Gödel claimed) or makes it immediately
evident that Turing computability should be identified with effectiveness in the
ordinary sense (as Church asserted). A tentative answer is provided; but we’ll see
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that a genuine methodological problem remains. It is addressed in Section 5.

4.1 Machines and workers

The list of different notions in the argument from confluence includes, of course,
Turing computability. Though confluence is at issue, there is usually an additional
remark that Turing gave in his [1936] the most convincing analysis of effective cal-
culability, and that his notion is truly adequate. What is the notion of computation
that is being praised? — In the next few paragraphs I will describe a two-letter
Turing machine, following [Davis, 1958] rather than Turing’s original presenta-
tion. (The differences are discussed in Kleene’s Introduction to Metamathematics,
p. 361, where it is also stated that this treatment “is closer in some respects to
[Post, 1936]”.)

A Turing machine consists of a finite, but potentially infinite tape. The tape is
divided into squares, and each square may carry a symbol from a finite alphabet,
say, just the two-letter alphabet consisting of 0 and 1. The machine is able to
scan one square at a time and perform, depending on the content of the observed
square and its own internal state, one of four operations: print 0, print 1, or shift
attention to one of the two immediately adjacent squares. The operation of the
machine is given by a finite list of commands in the form of quadruples qiskclqm
that express the following: If the machine is in internal state qi and finds symbol
sk on the square it is scanning, then it is to carry out operation cl and change its
state to qm. The deterministic character of the machine’s operation is guaranteed
by the requirement that a program must not contain two different quadruples with
the same first two components.

Gandy in his [1988] gave a lucid informal description of a Turing machine com-
putation without using internal states or, as Turing called them, m-configurations:
“The computation proceeds by discrete steps and produces a record consisting of a
finite (but unbounded) number of cells, each of which is either blank or contains a
symbol from a finite alphabet. At each step the action is local and is locally deter-
mined, according to a finite table of instructions” (p. 88). How Turing avoids the
reference to internal states will be discussed below; why such a general formulation
is appropriate will be seen in section 4.3.

For the moment, however, let me consider the Turing machines I just described.
Taking for granted a representation of natural numbers in the two-letter alphabet
and a straightforward definition of when to call a number-theoretic function Turing
computable, I put the earlier remark before you as a question: Does this notion
provide “an unquestionably adequate definition of the general concept of formal
system”? Is it even plausible that every effectively calculable function is Turing
computable? It seems to me that a näıve inspection of the restricted notion of
Turing computability should lead to ”No!” as a tentative answer to the second
and, thus, to the first question. However, a systematic development of the theory
of Turing computability convinces one quickly that it is a powerful notion.

One goes almost immediately beyond the examination of particular functions
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and the writing of programs for machines computing them; instead, one consid-
ers machines corresponing to operations that yield, when applied to computable
functions, other functions that are again computable. Two such functional opera-
tions are crucial, namely, composition and minimization. Given these operations
and the Turing computability of a few simple initial functions, the computability
of all general recursive functions follows. This claim takes for granted Kleene’s
1936 proof of the equivalence between general recursiveness and µ-recursiveness.
Since Turing computable functions are readily shown to be among the µ-recursive
ones, it seems that we are now in exactly the same position as before with respect
to the evidence for Church’s Thesis. This remark holds also for Post’s model of
computation.

Post’s combinatory processes are generated by computation steps “identical”
with Turing’s; Post’s model was published in the brief 1936 note, Finite combina-
tory processes — Formulation 1. Here we have a worker who operates in a symbol
space consisting of

a two way infinite sequence of spaces or boxes, i.e., ordinally similar to
the series of integers . . . . The problem solver or worker is to move and
work in this symbol space, being capable of being in, and operating in
but one box at a time. And apart from the presence of the worker,
a box is to admit of but two possible conditions, i.e., being empty or
unmarked, and having a single mark in it, say a vertical stroke.29

The worker can perform a number of primitive acts, namely, make a vertical stroke
[V ], erase a vertical stroke [E], move to the box immediately to the right [Mr] or to
the left [Ml] (of the box he is in), and determine whether the box he is in is marked
or not [D]. In carrying out a particular combinatory process the worker begins in a
special box (the starting point) and then follows directions from a finite, numbered
sequence of instructions. The i-th direction, i between 1 and n, is in one of the
following forms: (1) carry out act V,E,Mr, or Ml and then follow direction ji,
(2) carry out act D and then, depending on whether the answer was positive or
negative, follow direction j′i or j′′i . (Post has a special stop instruction, but that can
be replaced by stopping, conventionally, in case the number of the next direction
is greater than n.) Are there intrinsic reasons for choosing Formulation 1, except
for its simplicity and Post’s expectation that it will turn out to be equivalent to
general recursiveness? An answer to this question is not clear (from Post’s paper),
and the claim that psychological fidelity is aimed for seems quite opaque. Post
writes at the very end of his paper:

The writer expects the present formulation to turn out to be equivalent
to recursiveness in the sense of the Gödel–Church development. Its
purpose, however, is not only to present a system of a certain logical
potency but also, in its restricted field, of psychological fidelity. In the

29[Post, 1936, 289]. Post remarks that the infinite sequence of boxes can be replaced by a
potentially infinite one, expanding the finite sequence as necessary.
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latter sense wider and wider formulations are contemplated. On the
other hand, our aim will be to show that all such are logically reducible
to formulation 1. We offer this conclusion at the present moment as a
working hypothesis. And to our mind such is Church’s identification of
effective calculability with recursiveness. (p. 291)

Investigating wider and wider formulations and reducing them to the above basic
formulation would change for Post this “hypothesis not so much to a definition or
to an axiom but to a natural law”.30

It is methodologically remarkable that Turing proceeded in exactly the opposite
way when trying to support the claim that all computable numbers are machine
computable or, in our way of speaking, that all effectively calculable functions are
Turing computable. He did not try to extend a narrow notion reducibly and obtain
in this way additional quasi-empirical support; rather, he attempted to analyze
the intended broad concept and reduce it to the narrow one — once and for all. I
would like to emphasize this, as it is claimed over and over that Post provided in his
1936 paper “much the same analysis as Turing”. As a matter of fact, Post hardly
offers an analysis of effective calculations or combinatory processes in this paper; it
may be that Post took the context of his own work, published only much later, too
much for granted.31 There is a second respect in which Post’s logical work differs
almost tragically from Gödel’s and Turing’s, and Post recognized that painfully in
the letters he wrote to Gödel in 1938 and 1939: these logicians obtained decisive
mathematical results that had been within reach of Post’s own investigations.32

By examining Turing’s analysis and reduction we will find the key to answering
the question I raised on the difference between Church’s and Turing’s propos-
als. Very briefly put it is this: Turing deepened Church’s step-by-step argument
by focusing on the mechanical operations underlying the elementary steps and
by formulating well-motivated constraints that guarantee their recursiveness. Be-
fore presenting in the next subsection Turing’s considerations systematically, with
some simplification and added structure, I discuss briefly Turing’s fundamental

30[L.c., 291]
31The earlier remark on Post’s analysis is from [Kleene, 1988, 34]. In [Gandy, 1988, 98],

one finds this pertinent and correct observation on Post’s 1936 paper: “Post does not analyze
nor justify his formulation, nor does he indicate any chain of ideas leading to it.” However,
that judgment is only locally correct, when focusing on this very paper. To clarify some of the
interpretative difficulties and, most of all, to see the proper context of Post’s work that reaches
back to the early 1920s, it is crucial to consider other papers of his, in particular, the long essay
[1941] that was published only in [Davis, 1965] and the part that did appear in 1943 containing
the central mathematical result (canonical production systems are reducible to normal ones). In
1994 Martin Davis edited Post’s Collected Works. Systematic presentations of Post’s approach
to computability theory were given by Davis [1958] and Smullyan [1961] and [1993]. Brief, but
very informative introductions can be found in [Davis, 1982, 18–22], [Gandy, 1988, 92–98], and
[Stillwell, 2004]. Büchi continued in most interesting ways Post’s investigations; see his Collected

Works, in particular part 7 on computability with comments by Davis.
32The letters are found in volume V of Gödel’s Collected Works; a very brief description of

Post’s work on canonical and normal systems is given in my Introductory Note to the correspon-
dence.
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mathematical results (in Kleene’s formulation) and infer the unsolvability of the
Entscheidungsproblem.

Let ψM be the unary number theoretic function that is computed by machineM ,
and let T (z, x, y) express that y is a computation of a machine with Gödelnumber
z for argument x; then ψM (x) = U(µy.T (gn(M), x, y)); U is the result-extracting
function and gn(M) the Gödelnumber of M . Both T and U are easily seen
to be primitive recursive, in particular, when Turing machines are presented as
Post systems; see subsection 4.3. Consider the binary function ϕ(z, x) defined
by U(µy.T (z, x, y)); that is a partial recursive function and is computable by a
machine U such that ψU (z, x) = ϕ(z, x) on their common domain of definition.
U can compute any unary total function f that is Turing computable: f(x) =
ψM (x), when M is the machine computing f ; as ψM (x) = U(µy.T (gn(M), x, y)),
U(µy.T (gn(M), x, y)) = ϕ(gn(M), x), and ϕ(gn(M), x) = ψU (gn(M), x), we have
f(x) = ψU (gn(M), x). Thus, U can be considered as a “universal machine”.

A modification of the diagonal argument shows that Turing machines cannot
answer particular questions concerning Turing machines. The most famous ques-
tion is this: Does there exist an effective procedure implemented on a Turing
machine that decides for any Turing machine M and any input x, whether the
computation of machine M for input x terminates or halts? This is the Halting
Problem as formulated by Turing in 1936; it is clearly a fundamental issue con-
cerning computations and is unsolvable. The argument is classical and begins by
assuming that there is an H that solves the halting problem, i.e., for any M and
x, ψH(gn(M), x) = 1 iff M halts for argument x; otherwise ψH(z, x) = 0. It is
easy to construct a machine H∗ from H, such that H∗ halts for x iff ψH(x, x) = 0.
Let h∗ be gn(H∗); then we have the following equivalences: H∗ halts for h∗ iff
ψH(h∗, h∗) = 0 iff ψH(gn(H∗), h∗) = 0 iff H∗ does not halt for h∗, a contradic-
tion. Turing used the unsolvability of this problem to establish the unsolvability
of related machine problems, the self-halting and the printing problem. For that
purpose he implicitly used a notion of effective reducibility; a problem P , identified
with a set of natural numbers, is reducible to another problem Q just in case there
is a recursive function f , such that for all x : P (x) if and only if Q(f(x)). Thus,
if we want to see whether x is in P we compute f(x) and test its membership in
Q. In order to obtain his negative answer to the decision problem Turing reduced
in a most elegant way the halting problem to the decision problem. Thus, if the
latter problem were solvable, the former problem would be.

The self-halting problem K is the simplest in an infinite sequence of increasingly
complex and clearly undecidable problems, the so-called jumps. Notice that for
a machine M with code e the set K can be defined arithmetically with Kleene’s
T-predicate by (∃y)T (e, e, y). K is indeed complete for sets A that are definable by
formulas obtained from recursive ones by prefixing one existential quantifier; i.e.,
any such A is reducible to K. These A can be given a different and very intuitive
characterization: A is either the empty set or the range of a recursive function.
Under this characterization the A’s are naturally called “recursively enumerable”,
or simply r.e.. It is not difficult to show that the recursive sets are exactly those
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that are r.e. and have an r.e. complement. Post’s way of generating these sets by
production systems thus opened a distinctive approach to recursion theory.33

Now that we have developed a small fraction of relevant computability theory,
we return to the fundamental issue, namely, why was Turing’s notion of com-
putability exactly right to obtain a convincing negative solution of the decision
problem and also for achieving a precise characterization of “formal systems”?
That it was exactly right, well, that still has to be argued for. The examination
of mathematical results and the cool shape of a definition certainly don’t provide
the reason. Let us look back at Turing’s paper; it opens (p. 116) with a brief
description of what is ostensibly its subject, namely, “computable numbers” or
“the real numbers whose expressions as a decimal are calculable by finite means”.
Turing is quick to point out that the fundamental problem of explicating “cal-
culable by finite means” is the same when considering calculable functions of an
integral variable, calculable predicates, and so forth. So it is sufficient to address
the question, what does it mean for a real number to be calculable by finite means?
Turing admits:

33Coming back to complex sets, one obtains the jump hierarchy by relativizing the concept of
computation to sets of natural numbers whose membership relations are revealed by “oracles”.
The jump K′ of K, for example, is defined as the self-halting problem, when an oracle for K is
available. This hierarchy can be associated to definability questions in the language of arithmetic:
all jumps are definable by some arithmetical formula, and all arithmetically definable sets are
reducible to some jump. A good survey of more current work can be found in [Griffor, 1999].
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This requires rather more explicit definition. No real attempt will be
made to justify the definitions given until we reach §9. For the present
I shall only say that the justification lies in the fact that the human
memory is necessarily limited. (p. 117)

In §9 Turing claims that the operations of his machines “include all those which
are used in the computation of a number”. He tries to establish the claim by
answering the real question at issue, “What are the possible processes which can
be carried out in computing a number?” The question is implicitly restricted to
processes that can be carried out by a human computer. Given the systematic
context that reaches back to Leibniz’s “Calculemus!” this is exactly the pertinent
issue to raise: the general problematic requires an analysis of the mechanical steps
a human computer can take; after all, a positive solution to the decision problem
would be provided by a procedure that in principle can be carried out by us.

Gandy made a useful suggestion, namely, calling a human carrying out a com-
putation a “computor” and referring by “computer” to some computing machine
or other. In Turing’s paper, “computer” is always used for a human computing
agent who proceeds mechanically; his machines, our Turing machines, consistently
are just machines. The Oxford English Dictionary gives this meaning of “me-
chanical” when applied to a person as “resembling (inanimate) machines or their
operations; acting or performed without the exercise of thought or volition;. . . ”.
When I want to stress strongly the machine-like behavior of a computor, I will
even speak of a mechanical computor. The processes such a computor can carry
out are being analyzed, and that is exactly Turing’s specific and extraordinary
approach: the computing agent is brought into the analysis. The question is thus
no longer, “Which number theoretic functions can be calculated?” but rather,
“Which number theoretic functions can be calculated by a mechanical computor?”
Let’s address that question with Turing and see, how his analysis proceeds. Gandy
emphasizes in his [1988, 83–84], absolutely correctly as we will see, that “Turing’s
analysis makes no reference whatsoever to calculating machines. Turing machines
appear as a result, as a codification, of his analysis of calculations by humans”.

4.2 Mechanical computors

Turing imagines a computor writing symbols on paper that is divided into squares
“like a child’s arithmetic book”. Since the two-dimensional character of this com-
puting space is taken not to be an “essential of computation” (p. 135), Turing
takes a one-dimensional tape divided into squares as the basic computing space.
What determines the steps of the computor? And what elementary operations
can he carry out? Before addressing these questions, let me formulate one crucial
and normative consideration. Turing explicitly strives to isolate operations of the
computor (p. 136) that are “so elementary that it is not easy to imagine them
further divided”. Thus it is crucial that symbolic configurations relevant to fixing
the circumstances for the computor’s actions can be recognized immediately or at
a glance.
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Because of Turing’s first reductive step to a one-dimensional tape, we have to
be concerned with either individual symbols or sequences of symbols. In the
first case, only finitely many distinct symbols should be written on a square;
Turing argues (p. 135) for this restriction by remarking, “If we were to allow an
infinity of symbols, then there would be symbols differing to an arbitrarily small
extent”, and the computor could not distinguish at a glance between symbols
that are “sufficiently” close. In the second and related case consider, for example,
Arabic numerals like 178 or 99999999 as one symbol; then it is not possible for
the computor to determine at one glance whether or not 9889995496789998769 is
identical with 98899954967899998769. This restriction to finitely many observed
symbols or symbol sequences will be the central part of condition (B.1) below and
also constrains via condition (L.1) the operations a computor can carry out.

The behavior of a computor is determined uniquely at any moment by two
factors, namely, the symbols or symbol sequences he observes, and his “state
of mind” or “internal state”; what is uniquely determined is the action to be
performed and the next state of mind to be taken.34 This uniqueness requirement
may be called determinacy condition (D) and guarantees that computations are
deterministic. Internal states are introduced so that the computor’s behavior can
depend on earlier observations, i.e., reflect his experience.35 A computor thus
satisfies two boundedness conditions:

(B.1) There is a fixed finite bound on the number of symbol sequences a com-
putor can immediately recognize;

(B.2) There is a fixed finite bound on the number of states of mind that need
to be taken into account.

For a computor there are thus only boundedly many different relevant combina-
tions of symbol sequences and internal states. Since the computor’s behavior,
according to (D), is uniquely determined by such combinations and associated
operations, the computor can carry out at most finitely many different opera-
tions, and his behavior is fixed by a finite list of commands. The operations of a
computor are restricted by locality conditions:

(L.1) Only elements of observed symbol sequences can be changed;

(L.2) The distribution of observed squares can be changed, but each of the new
observed squares must be within a bounded distance L of a previously observed
square.

Turing emphasizes that “the new observed squares must be immediately rec-
ognizable by the computor” and that means the distributions of the observed

34Turing argues in a similar way for bounding the number of states of mind, alleging confusion,
if the states of mind were too close.

35Turing relates state of mind to memory in §1 for his machines: “By altering its m-
configuration the machine can effectively remember some of the symbols which it has ’seen’
(scanned) previously.” Kleene emphasizes this point in [1988, 22]: “A person computing is not
constrained to working from just what he sees on the square he is momentarily observing. He
can remember information he previously read from other squares. This memory consists in a
state of mind, his mind being in a different state at a given moment of time depending on what
he remembers from before.”



576 Wilfried Sieg

squares arising from changes according to (L.2) must be among the finitely many
ones of (B.1). Clearly, the same must hold for the symbol sequences resulting
from changes according to (L.1). Since some of the operations involve a change
of state of mind, Turing concludes:

The most general single operation must therefore be taken to be one of
the following: (A) A possible change (a) of symbol [as in (L.1)] together
with a possible change of state of mind. (B) A possible change (b) of
observed squares [as in (L.2)] together with a possible change of state
of mind. (p. 137)

With this restrictive analysis of the computor’s steps it is rather straightforward to
conclude that a Turing machine can carry out his computations. Indeed, Turing
first considers machines that operate on strings (“string machines”) and mimic
directly the work of the computor; then he asserts referring to ordinary Turing
machines (“letter machines”):

The machines just described [string machines] do not differ very es-
sentially from computing machines as defined in § 2 [letter machines],
and corresponding to any machine of this type a computing machine
can be constructed to compute the same sequence, that is to say the
sequence computed by the computer. (p. 138)

It should be clear that the string machines, just as Gandy asserted, “appear as a
result, as a codification, of his analysis of calculations by humans”. Thus we seem
to have, shifting back to the calculation of values of number-theoretic functions,
an argument for the claim: Any number-theoretic function F calculable by a
computor, who satisfies the conditions (D) and (B.1)–(L.2), is computable by a
Turing machine.36 Indeed, both Gandy in his [1988] and I in my [1994] state that
Turing established a theorem by the above argument. I don’t think anymore, as
the reader will notice, that that is correct in general; it is correct, however, if one
considers the calculations as being carried out on strings of symbols from the very
beginning.

Because of this last remark and an additional observation, Turing’s analysis
can be connected in a straightforward way with Church’s considerations discussed
in section 3.3. The additional observation concerns the determinacy condition
(D): it is not needed to guarantee the Turing computability of F in the above
claim. More precisely, (D) was used in conjunction with (B.1) and (B.2) to argue
that computors can carry out only finitely many operations; this claim follows
also from conditions (B.1)–(L.2) without appealing to (D). Thus, the behavior of

36A similar analysis is presented in [Wang, 1974, 90–95]. However, Wang does not bring out
at all the absolutely crucial point of grounding the boundedness and locality conditions in the
limitations of the computing subject; instead he appeals to an abstract principle of finiteness.
Post’s remarks on “finite methods” on pp. 426–8 in [Davis, 1965] are also grappling with these
issues.
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computors can still be fixed by a finite list of commands (though it may exhibit
non-determinism) and can be mimicked by a Turing machine. Consider now an
effectively calculable function F and a non-deterministic computor who calculates,
in Church’s sense, the value of F in a logic L. Using the (additional) observation
and the fact that Turing computable functions are recursive, F is recursive.37

This argument for F ’s recursiveness does no longer appeal to Church’s Thesis,
not even to the restricted central thesis; rather, such an appeal is replaced by the
assumption that the calculation in the logic is done by a computor satisfying the
conditions (B.1)–(L.2).

Both Church and Gödel state they were convinced by Turing’s work that effec-
tive calculability should be identified with Turing computability and thus is also
co-extensional with recursiveness and λ-definability. Church expressed his views
in the 1937 review of Turing’s paper from which I quoted in the introduction; on
account of Turing’s work the identification is considered as “immediately evident”.
We’ll look at that review once more in subsection 4.4 when turning attention to
machine computability, as Church emphasizes the machine character of Turing’s
model. As to Gödel I have not been able to find in his published papers any
reference to Turing’s paper before his [1946] except in the purely mathematical
footnote 44 of [Gödel, 1944]; that paper was discussed in section 3.4 and does not
give a distinguished role to Turing’s analysis. Rather, the “great importance of
the concept of general recursiveness” is pointed to and “Turing computability” is
added disjunctively, indeed just parenthetically. As we saw, Gödel judged that the
importance of the concept is “largely due” to its absoluteness.

There is some relevant discussion of Turing’s work in unpublished material that
is now available in the Collected Works, namely, in Gödel’s [193?, 164—175] of CW
III ), the Gibbs lecture of 1951 (pp. 304–5 and p. 309 of CW III ), and in the letter
of 2 February 1957 that was addressed, but not sent, to Ernest Nagel (pp. 145–6
of CW V ). The first written and public articulation of Gödel’s views can be found
in the 1963 Addendum to his [1931] (for its publication in [van Heijenoort, 1967])
and in the 1964 Postscriptum to the Princeton Lectures (for their publication
in [Davis, 1965]). In the latter, more extended note, Gödel is perfectly clear
about the structure of Turing’s argument. “Turing’s work”, he writes, “gives an
analysis [my emphasis] of the concept ‘mechanical procedure’ (alias ‘algorithm’
or ‘computation procedure’ or ‘finite combinatorial procedure’). This concept is
shown [my emphasis] to be equivalent with that of a ‘Turing machine’.” In a
footnote attached to this observation he called “previous equivalent definitions of
computability”, referring to λ-definability and recursiveness, “much less suitable
for our purpose”. What is not elucidated by any remark of Gödel, as far as I
know, is the result of Turing’s analysis, i.e., the explicit formulation of restrictive
conditions. There is consequently no discussion of the reasons for the correctness
of these conditions or, for that matter, of the analysis; there is also no indication

37The proof is given via considerations underlying Kleene’s normal form theorem. That is
done in the most straightforward way if, as discussed in the next subsection, Turing machines
are described as Post systems.



578 Wilfried Sieg

of a proof establishing the equivalence between the analyzed (and presumably
rigorous) notion of mechanical procedure and the concept of a Turing machine.
(Gödel’s views are traced with many more details in my [2006].)

A comparison of Gödel’s concise description with Turing’s actual argument
raises a number of important issues, in particular one central question I earlier
put aside: Isn’t the starting-point of Turing’s argument too vague and open, un-
less we take for granted that the symbolic configurations are of a certain kind,
namely, symbol strings in our case? But even if that is taken for granted and
Turing’s argument is viewed as perfectly convincing, there remains a methodolog-
ical problem. According to Gödel the argument consists of an analysis followed
by a proof; how do we carve up matters, i.e., where does the analysis stop and
the proof begin? Does the analysis stop only, when a string machine has fully
captured the computor’s actions, and the proof is just the proof establishing the
reduction of computations by string machines to those by letter machines? Or
does the analysis just lead to restrictive conditions for mechanical computors and
the proof establishes the rest? To get a clearer view about these matters, I will
simplify the argument and examine more closely the justificatory steps.

4.3 Turing’s central thesis

The first section of this essay had the explicit purpose of exposing the broad
context for the investigations of Herbrand, Gödel, Church, Kleene, Post, and Tur-
ing. There is no doubt that an analysis of human effective procedures on finite
(symbolic) configurations was called for, and that the intended epistemological re-
strictions were cast in “mechanical” terms; vide as particularly striking examples
the remarks of Frege and Gödel quoted in section 2.1. Thus, Turing’s explication
of effective calculability as calculability by a mechanical computor should be ac-
cepted. What are the general restrictions on calculation processes, and how are
such constraints related to the nature of mechanical computors?

The justificatory steps in Turing’s argument contain crucial appeals to bound-
edness and locality conditions. Turing claims that their ultimate justification lies
in the necessary limitation of human memory. According to Gandy, Turing ar-
rives at the restrictions “by considering the limitations of our sensory and mental
apparatus”. However, in Turing’s argument only limitations of our sensory appa-
ratus are involved, unless “state of mind” is given an irreducibly mental touch.
That is technically unnecessary as Post’s equivalent formulation makes clear. It
is systematically also not central for Turing, as he describes in section 9 (III) of
his paper, p. 139, a modified computor. There he avoids introducing “state of
mind” by considering instead “a more physical and definite counterpart of it”.
(Indeed, if we take into account the quest for insuring “radical intersubjectivity”
then internal, mental states should be externalized in any event.) Thus, Turing’s
analysis can be taken to appeal only to sensory limitations of the type I discussed
at the beginning of section 4.2.38 Such limitations are obviously operative when

38As Turing sees memory limitations as ultimately justifying the restrictive conditions, but
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we work as purely mechanical computors.
Turing himself views his argument for the reduction of effectively calculable

functions to functions computable by his machines as basically “a direct appeal
to intuition”. Indeed, he claims, p. 135, more strongly, “All arguments which
can be given [for this reduction] are bound to be, fundamentally, appeals to intu-
ition, and for that reason rather unsatisfactory mathematically.” If we look at his
paper [Turing, 1939], the claim that such arguments are “unsatisfactory mathe-
matically” becomes at first rather puzzling, since he observes there that intuition
is inextricable from mathematical reasoning. Turing’s concept of intuition is much
more general than that ordinarily used in the philosophy of mathematics. It is
introduced in the 1939 paper explicitly to address the issues raised by Gödel’s first
incompleteness theorem; that is done in the context of work on ordinal logics or,
what was later called, progressions of theories. The discussion is found in section
11:

Mathematical reasoning may be regarded rather schematically as the
exercise of a combination of two faculties, which we may call intuition
and ingenuity. The activity of the intuition consists in making sponta-
neous judgements which are not the result of conscious trains of reason-
ing. These judgements are often but by no means invariably correct
(leaving aside the question of what is meant by “correct”). . . . The
exercise of ingenuity in mathematics consists in aiding the intuition
through suitable arrangements of propositions, and perhaps geometri-
cal figures or drawings. It is intended that when these are really well
arranged the validity of the intuitive steps which are required cannot
seriously be doubted. (pp. 208–210)

Are the propositions in Turing’s argument arranged with sufficient ingenuity so
that “the validity of the intuitive steps which are required cannot seriously be
doubted”? Or, does their arrangement allow us at least to point to central restric-
tive conditions with clear, adjudicable content?

To advance the further discussion, I simplify the formulation of the restrictive
conditions that can be extracted from Turing’s discussion by first eliminating in-
ternal states by “more physical counterparts” as Turing himself proposed. Then
I turn machine operations into purely symbolic ones by presenting suitable Post
productions as Turing himself did for obtaining new mathematical results in his
[1950a], but also for a wonderful informal exposition of solvable and unsolvable

none of the conditions seems to be directly motivated by such a limitation, we should ask, how we
can understand his claim. I suggest the following: If our memory were not subject to limitations of
the same character as our sensory apparatus, we could scan (with the limited sensory apparatus)
a symbolic configuration that is not immediately recognizable, read in sufficiently small parts so
that their representations could be assembled in a unique way to a representation of the given
symbolic configuration, and finally carry out (generalized) operations on that representation in
memory. Is one driven to accept Turing’s assertion as to the limitation of memory? I suppose
so, if one thinks that information concerning symbolic structures is physically encoded and that
there is a bound on the number of available codes.
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problems in [1954]. Turing extended in the former paper Post’s (and Markov’s)
result concerning the unsolvability of the word-problem for semi-groups to semi-
groups with cancellation; on the way to the unsolvability of this problem, [Post,
1947] had used a most elegant way of describing Turing machines as production
systems. The configurations of a Turing machine are given by instantaneous de-
scriptions of the form αqlskβ, where α and β are possibly empty strings of symbols
in the machine’s alphabet; more precisely, an id contains exactly one state symbol
and to its right there must be at least one symbol. Such ids express that the
current tape content is αskβ, the machine is in state ql and scans (a square with
symbol) sk. Quadruples qiskclqm of the program are represented by rules; for
example, if the operation cl is print 0, the corresponding rule is:

αqiskβ => αqm0β.

Such formulations can be given, obviously, for all the different operations. One
just has to append s0 to α(β) in case cl is the operation move to the left (right)
and α(β) is the empty string; that reflects the expansion of the only potentially
infinite tape by a blank square.

This formulation can be generalized so that machines operate directly on finite
strings of symbols; operations can be indicated as follows:

αγqlδβ => αγ∗qmδ
∗β.

If in internal state ql a string machine recognizes the string γδ (i.e., takes in the
sequence at one glance), it replaces that string by γ∗δ∗ and changes its internal
state to qm. The rule systems describing string machines are semi-Thue systems
and, as the latter, not deterministic, if their programs are just sequences of pro-
duction rules. The usual non-determinism certainly can be excluded by requiring
that, if the antecedents of two rules coincide, so must the consequents. But that
requirement does not remove every possibility of two rules being applicable simul-
taneously: consider a machine whose program includes in addition to the above
rule also the rule

αγ♯qlδ
♯β => αγ⊥qnδ

⊥β,

where δ♯ is an initial segment of δ, and γ♯ is an end segment of γ; under these
circumstances both rules would be applicable to γqlδ. This non-determinism can
be excluded in a variety of ways, e.g., by always using the applicable rule with the
largest context. In sum, the Post representation joins the physical counterparts
of internal states to the ordinary symbolic configurations and forms instantaneous
descriptions, abbreviated as id. Any id contains exactly one such physical coun-
terpart, and the immediately recognizable sub-configuration of an id must contain
it. As the state symbol is part of the observed configuration, its internal shifting
can be used to indicate a shift of the observed configuration. Given this compact
description, the restrictive conditions are as follows:
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(B) (Boundedness) There is a fixed finite bound on the number of symbol
sequences (containing a state symbol) a computor can immediately recognize.

(L) (Locality) A computor can change only an id ’s immediately recognizable
sub-configuration.

These restrictions on computations are specifically and directly formulated for
Post productions. Turing tried to give, as we saw, a more general argument
starting with a broader class of symbolic configurations. Here is the starting-point
of his considerations together with a dimension-lowering step to symbol sequences:

Computing is normally done by writing certain symbols on paper. We
may suppose this paper is divided into squares like a child’s arithmetic
book. In elementary arithmetic, the two-dimensional character of the
paper is sometimes used. But such a use is always avoidable, and I
think that it will be agreed that the two-dimensional character of paper
is no essential of computation. I assume then that the computation
is carried out on one-dimensional paper, i.e. on a tape divided into
squares. (p. 135)

This last assumption, . . . the computation is carried out on one-dimensional paper
. . . , is based on an appeal to intuition in Turing’s sense and makes the general
argument unconvincing as a rigorous proof. Turing’s assertion that effective cal-
culability can be identified with machine computability should thus be viewed as
the result of asserting a central thesis and constructing a two-part argument: the
central thesis asserts that the computor’s calculations are carried out on symbol
sequences; the first part of the argument (using the sensory limitations of the
computor) yields the claim that every operation (and thus every calculation) can
be carried out by a suitable string machine; the second part is the rigorous proof
that letter machines can simulate these machines. The claim is trivial, as the
computor’s operations are the machine operations.

4.4 Stronger theses

The above argumentative structure leading from computor calculations to Turing
machine computations is rather canonical, once the symbolic configurations are
fixed as symbol sequences and given the computor’s limitations. In the case of
other, for example, two or three-dimensional symbolic configurations, I do not see
such a canonical form of reduction, unless one assumes again that the configura-
tions are of a very special regular or normal shape.39 In general, an “argumentative
structure” supporting a reduction will contain then a central thesis in a far stronger
sense, namely, that the calculations of the computor can be carried out by a pre-
cisely described device operating on a particular class of symbolic configurations;

39This issue is also discussed in Kleene’s Introduction to Metamathematics, pp. 376–381, in
an informed and insightful defense of Turing’s Thesis. However, in Kleene’s way of extending
configurations and operations, much stronger normalizing conditions are in place; e.g., when
considering machines corresponding to our string machines the strings must be of the same
length.
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indeed, the devices should be viewed as generalized Post productions. These last
considerations also indicate, how to carve up matters between analysis and proof;
i.e., they allow us to answer the question asked at the end of subsection 4.2.

The diagram below represents these reflections graphically and relates them to
the standard formulation of Turing’s Thesis. Step 1 is given by conceptual analysis,
whereas step 2 indicates the application of the central thesis for a particular class
of symbolic configurations or symcons. (The symcon machines are Post systems
operating, of course, on symcons.) The equivalence proof justifies an extremely
simple description of computations that is most useful for mathematical investi-
gations, from the construction of a universal machine and the formulation of the
halting problem to the proof of the undecidability of the Entscheidungsproblem. It
should be underlined that step 2, not the equivalence proof, is for Turing the cru-
cial one that goes beyond the conceptual analysis; for me it is the problematic one
that requires further reflection. I will address it in two different ways: inductively
now and axiomatically in Section 5.

Calculability of

number-theoretic

functions

Computations by

symcon machine

Calculations by

computer satisfying

boundedness and
locality conditions

21

Turing’s Thesis Equivalence proof

Computations by

letter machine

In order to make Turing’s central thesis, quite in Post’s spirit, inductively more
convincing, it seems sensible to allow larger classes of symbolic configurations and
more general operations on them. Turing himself intended, as we saw, to give
an analysis of mechanical procedures on two-dimensional configurations already in
1936. In 1954 he considered even three-dimensional configurations and mechanical
operations on them, starting out with examples of puzzles: square piece puzzles,
puzzles involving the separation of rigid bodies or the transformation of knots,
i.e., puzzles in two and three dimensions. He viewed Post production systems as
linear or substitution puzzles. As he considered them as puzzles in “normal form”,
he was able to formulate a suitable version of “Turing’s Thesis”:

Given any puzzle we can find a corresponding substitution puzzle which
is equivalent to it in the sense that given a solution of the one we can
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easily find a solution of the other. . . . A transformation can be carried
out by the rules of the original puzzle if and only if it can be carried
out by substitutions . . . .40

Turing admits that this formulation is “somewhat lacking in definiteness” and
claims that it will remain so; he characterizes its status as lying between a theorem
and a definition: “In so far as we know a priori what is a puzzle and what is not,
the statement is a theorem. In so far as we do not know what puzzles are, the
statement is a definition which tells us something about what they are.” Of course,
Turing continues, one could define puzzle by a phrase beginning with “a set of
definite rules”, or one could reduce its definition to that of computable function or
systematic procedure. A definition of any of these notions would provide one for
puzzles. Neither in 1936 nor in 1954 did Turing try to characterize mathematically
more general configurations and elementary operations on them. I am going to
describe briefly one particular attempt of doing just that by Byrnes and me in our
[1996].

Our approach was influenced by Kolmogorov and Uspensky’s work on algo-
rithms and has three distinct components: the symbolic configurations are certain
finite connected and labeled graphs, we call K(olmogorov)-graphs; K-graphs con-
tain a unique distinguished element that corresponds to the scanned square of a
Turing machine tape; the operations substitute neighborhoods of the distinguished
element by appropriate other neighborhoods and are given by a finite list of gener-
alized Post production rules. Though broadening Turing’s original considerations,
we remain clearly within his general analytic framework and prove that letter ma-
chines can mimic K-graph machines. Turing’s central thesis expresses here that
K-graph machines can do the work of computors directly. As a playful indication
of how K-graph machines straightforwardly can carry out human and genuinely
symbolic, indeed diagrammatic algorithms, we programmed a K-graph machine to
do ordinary, two-dimensional column addition. In sum then, a much more general
class of symbolic configurations and operations on them is considered, and the
central thesis for K-graph machines seems even more plausible than the one for
string machines.

The separation of conceptual analysis and mathematical proof is essential for
recognizing that the correctness of Turing’s Thesis (taken generically) rests on
two pillars, namely, on the correctness of boundedness and locality conditions for
computors and on the correctness of the pertinent central thesis. The latter asserts
explicitly that calculations of a computor can be mimicked by a particular kind of
machine. However satisfactory one may find this line of argument, there are two
weak spots: the looseness of the restrictive conditions (What are symbolic configu-
rations? What changes can mechanical operations effect?) and the corresponding
vagueness of the central thesis. We are, no matter how we turn ourselves, in a
position that is methodologically not fully satisfactory.

40[Turing, 1954, 15]
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4.5 Machine computability

Before attacking the central methodological issue in Section 5 from a different
angle that is however informed by our investigations so far, let us look at the
case, where reflection on limitations of computing devices leads to an important
general concept of parallel computation and allows us to abstract further from
particular types of configurations and operations. These considerations are based
on Gandy’s work in his [1980] that in its broad methodological approach parallels
Turing’s. At issue is machine calculability. The machines Turing associates with
the basic operations of a computor can be physically realized, and we can obviously
raise the question, whether these devices (our desktop computers, for example)
are just doing things faster than we do, or whether they are in a principled way
computationally more powerful.

It is informative first to look at Church’s perspective on Turing’s work in his
1937 review for the Journal of Symbolic Logic. Church was very much on tar-
get, though there is one fundamental misunderstanding as to the relative role of
computor and machine computability in Turing’s argument. For Church, com-
putability by a machine “occupying a finite space and with working parts of finite
size” is analyzed by Turing; given that the Turing machine is the outcome of the
analysis, one can then observe that “in particular, a human calculator, provided
with pencil and paper and explicit instructions, can be regarded as a kind of Turing
machine”. On account of the analysis and this observation it is for Church then
“immediately clear” that (Turing-) machine computability can be identified with
effectiveness. This is re-emphasized in the rather critical review of Post’s 1936
paper in which Church pointed to the essential finiteness requirements in Turing’s
analysis: “To define effectiveness as computability by an arbitrary machine, sub-
ject to restrictions of finiteness, would seem to be an adequate representation of
the ordinary notion, and if this is done the need for a working hypothesis disap-
pears.” This is right, as far as emphasis on finiteness restrictions is concerned.
But Turing analyzed, as we saw, a mechanical computor, and that provides the
basis for judging the correctness of the finiteness conditions. In addition, Church is
rather quick in his judgment that “certain further restrictions” can be imposed on
such arbitrary machines to obtain Turing’s machines; this is viewed “as a matter
of convenience” and the restrictions are for Church “of such a nature as obviously
to cause no loss of generality”.

Church’s apparent misunderstanding is rather common; see, as a later exam-
ple, Mendelson’s paper [1990]. It is Turing’s student, Robin Gandy who analyzes
machine computability in his 1980 paper Church’s thesis and principles for mech-
anisms and proposes a particular mathematical description of discrete mechanical
devices and their computations. He follows Turing’s three-step-argument of analy-
sis, formulation of restrictive principles and proof of a “reduction theorem”. Gandy
shows that everything calculable by a device satisfying the restrictive principles is
already computable by a Turing machine. The central and novel aspect of Gandy’s
analysis is the fact that it incorporates parallelism and covers cellular automata
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directly. This is of real interest, as cellular automata do not satisfy the locality
condition (L); after all, the configurations affected in a single computation step
are potentially unbounded.

What are discrete mechanical devices “in general”? — Gandy introduces the
term to make it clear that he does not deal with analogue devices, but rather
with machines that are “discrete” (i.e., consist of finitely many parts) and proceed
step-by-step from one state to the next. Gandy considers two fundamental physical
constraints for such devices: (1) a lower bound on the size of atomic components;
(2) an upper bound on the speed of signal propagation.41 These two constraints
together guarantee what the sensory limitations guarantee for computors, namely
that in a given unit of time there are only a bounded number of different observable
configurations (in a broad sense) and just a bounded number of possible actions
on them. This justifies Gandy’s contention that states of such machines “can be
adequately described in finite terms”, that calculations are proceeding in discrete
and uniquely determined steps and, consequently, that these devices can be viewed,
in a loose sense, as digital computers. If that’s all, then it seems that without
further ado we have established that machines in this sense are computationally not
more powerful than computors, at least not in any principled way. However, if the
concept of machine computability has to encompass “massive parallelism” then we
are not done yet, and we have to incorporate that suitably into the mathematical
description. And that can be done. Indeed, Gandy provided for the first time a
conceptual analysis and a general description of parallel algorithms.

Gandy’s characterization is given in terms of discrete dynamical systems
〈S,F〉, where S is the set of states and F governs the system’s evolution. These
dynamical systems have to satisfy four restrictive principles. The first principle
pertains to the form of description and states that any machine M can be pre-
sented by such a pair 〈S,F〉, and that M’s computation, starting in an initial
state x, is given by the sequence x, F(x), F(F(x)), . . . . Gandy formulates three
groups of substantive principles, the first of which, The Principle of Limitation of
Hierarchy, requires that the set theoretic rank of the states is bounded, i.e., the
structural class S is contained in a fixed initial segment of the hierarchy of hered-
itarily finite and non-empty sets HF. Gandy argues (on p. 131) that it is natural
or convenient to think of a machine in hierarchical terms, and that “for a given
machine the maximum height of its hierarchical structure must be bounded”. The
second of the substantive principles, The Principle of Unique Reassembly, claims
that any state can be “assembled” from “parts” of bounded size; its proper for-
mulation requires care and a lengthy sequence of definitions. The informal idea,
though, is wonderfully straightforward: any state of a concrete machine must be
built up from (finitely many different types of) off-the-shelf components. Clearly,
the components have a bound on their complexity. Both of these principles are

41Cf. [Gandy, 1980, 126, but also 135–6]. For a more detailed argument see [Mundici and Sieg,
section 3], where physical limitations for computing devices are discussed. In particular, there
is an exploration of how space-time of computations are constrained, and how such constraints
prevent us from having “arbitrarily” complex physical operations.
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concerned with the states in S; the remaining third and central principle, The
Principle of Local Causality, puts conditions on (the local determination of) the
structural operation F. It is formulated by Gandy in this preliminary way: “The
next state, Fx, of a machine can be reassembled from its restrictions to overlap-
ping ‘regions’ s and these restrictions are locally caused.” It requires that the
parts from which F(x) can be assembled depend only on bounded parts of x.

Gandy’s Central Thesis is naturally the claim that any discrete mechanical
device can be described as a dynamical system satisfying the above substantive
principles. As to the set-up John Shepherdson remarked in his [1988, 586]: “Al-
though Gandy’s principles were obtained by a very natural analysis of Turing’s
argument they turned out to be rather complicated, involving many subsidiary
definitions in their statement. In following Gandy’s argument, however, one is led
to the conclusion that that is in the nature of the situation.” Nevertheless, in [Sieg
and Byrnes, 1999] a greatly simplified presentation is achieved by choosing defini-
tions appropriately, following closely the central informal ideas and using one key
suggestion made by Gandy in the Appendix to his paper. This simplification does
not change at all the form of presentation. However, of the four principles used
by Gandy only a restricted version of the principle of local causality is explicitly
retained. It is formulated in two separate parts, namely, as the principle of Local
Causation and that of Unique Assembly. The separation reflects the distinction
between the local determination of regions of the next state and their assembly
into the next state.

Is it then correct to think that Turing’s and Gandy’s analyses lead to results
that are in line with Gödel’s general methodological expectations expressed to
Church in 1934? Church reported that expectation to Kleene a year later and
formulated it as follows:

His [i.e. Gödel’s] only idea at the time was that it might be possible, in
terms of effective calculability as an undefined notion, to state a set of
axioms which would embody the generally accepted properties of this
notion, and to do something on that basis.42

Let’s turn to that issue next.

5 AXIOMS FOR COMPUTABILITY.

The analysis offered by Turing in 1936 and re-described in 1954 was contiguous
with the work of Gödel, Church, Kleene, Hilbert and Bernays, and others, but
at the same time it was radically different and strikingly novel. They had expli-
cated the calculability of number-theoretic functions in terms of their evaluation
in calculi using only elementary and arithmetically meaningful steps; that put a
stumbling-block into the path of a deeper analysis. Turing, in contrast, analyzed
the basic processes that are carried out by computors and underlie the elementary

42Church in the letter to Kleene of November 29, 1935, quoted in [Davis, 1982, 9].
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calculation steps. The restricted machine model that resulted from his analysis
almost hides the fact that Turing deals with general symbolic processes.

Turing’s perspective on such general processes made it possible to restrict com-
putations by boundedness and locality conditions. These conditions are obviously
violated and don’t even make sense when the values of number theoretic func-
tions are determined by arithmetically meaningful steps. For example, in Gödel’s
equational calculus the replacement operations involve quite naturally arbitrarily
complex terms. However, for steps of general symbolic processes the conditions are
convincingly motivated by the sensory limitations of the computing agent and the
normative demand of immediate recognizability of configurations; the basic steps,
after all, must not be in need of further analysis. Following Turing’s broad ap-
proach Gandy investigated in [1980] the computations of machines. Machines can
in particular carry out parallel computations, and physical limitations motivate
restrictive conditions for them. In spite of the generality of his notion, Gandy was
able to show that any machine computable function is also Turing computable.

These analyses are taken now as a basis for further reflections along Gödelian
lines. In a conversation with Church that took place in early 1934, Gödel found
Church’s proposal to identify effective calculability with λ-definability “thoroughly
unsatisfactory”, but he did make a counterproposal. He suggested “to state a set
of axioms which embody the generally accepted properties of this notion (i.e.,
effective calculability), and to do something on that basis”. Gödel did not ar-
ticulate what the generally accepted properties of effective calculability might be
or what might be done on the basis of an appropriate set of axioms. Sharpen-
ing Gandy’s work I will give an abstract characterization of “Turing Computors”
and “Gandy Machines” as discrete dynamical systems whose evolutions satisfy
some well-motivated and general axiomatic conditions. Those conditions express
constraints, which have to be satisfied by computing processes of these particular
devices. Thus, I am taking the axiomatic method as a tool to resolve the method-
ological problems surrounding Church’s thesis for computors and machines. The
mathematical formulations that follow in section 5.1 are given in greater generality
than needed for Turing computors, so that they cover also the discussion of Gandy
machines. (They are also quite different from the formulation in [Gandy, 1980] or
in [Sieg and Byrnes, 1999a].)

5.1 Discrete dynamical systems

At issue is, how we can express those “well-motivated conditions” in a sharp way,
as I clearly have not given an answer to the questions: What are symbolic con-
figurations? What changes can mechanical operations effect? Nevertheless, some
aspects can be coherently formulated for computors: (i) they operate determin-
istically on finite configurations; (ii) they recognize in each configuration exactly
one pattern (from a bounded number of different kinds of such); (iii) they operate
locally on the recognized patterns; (iv) they assemble the next configuration from
the original one and the result of the local operation. Discrete dynamical systems
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provide an elegant framework for capturing these general ideas precisely. We con-
sider pairs 〈D,F〉 where D is a class of states (ids or syntactic configurations)
and F an operation from D to D that transforms a given state into the next one.
States are finite objects and are represented by non-empty hereditarily finite sets
over an infinite set U of atoms. Such sets reflect states of computing devices just
as other mathematical structures represent states of nature, but this reflection is
done somewhat indirectly, as only the ∈-relation is available.

In order to obtain a more adequate mathematical framework free of ties to
particular representations, we consider structural classes S, i.e., classes of states
that are closed under ∈-isomorphisms. After all, any ∈-isomorphic set can replace
a given one in this reflective, representational role. That raises immediately the
question, what invariance properties the state transforming operations F should
have or how the F-images of ∈-isomorphic states are related. Recall that any
∈-isomorphism π between states is a unique extension of some permutation on
atoms, and let π(x) or xπ stand for the result of applying π to the state x. The
lawlike connections between states are given by structural operations G from S
to S. The requirement on G will fix the dependence of values on just structural
features of a state, not the nature of its atoms: for all permutations π on U and
all x ∈ S, G(π(x)) is ∈-isomorphic to π(G(x)), and the isomorphism has the
additional property that it is the identity on the atoms occurring in the support
of π(x). G(π(x)) and π(G(x)) are said to be ∈-isomorphic over π(x), and we
write G(π(x)) ∼=π(x) π(G(x)). Note that we do not require the literal identity of
G(π(x)) and π(G(x)); that would be too restrictive, as the state may be expanded
by new atoms and it should not matter which new atoms are chosen. On the other
hand, the requirement G(π(x)) is ∈-isomorphic to π(G(x)) would be too loose, as
we want to guarantee the physical persistence of atomic components. Here is the
appropriate diagram:

x

π(x)

G(x)

G(π(x)) ∼=π(x) π(G(x))

This mathematical framework addresses just point (i) in the above list of central
aspects of mechanical computors. Now we turn to patterns and local operations. If
x is a given state, regions of the next state are determined locally from particular
parts for x on which the computor can operate.43 Boundedness requires that there
is only a bounded number of different kinds of parts, i.e., each part lies in one of

43A part y for x used to be in my earlier presentations a connected subtree y of the ∈-tree for
x, briefly y<*x, if y 6=x and y has the same root as x and its leaves are also leaves of x. More
precisely, y 6=x and y is a non-empty subset of {v | (∃z)(v<*z & z∈x)} ∪ {r | r∈x}. Now it
is just a subset, but I will continue to use the term “part” to emphasize that we are taking the
whole ∈-structure into account.
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a finite number of isomorphism types or, using Gandy’s terminology, stereotypes.
So let T be a fixed finite class of stereotypes. A part for x that is a member of a
stereotype of T is called, naturally enough, a T-part for x. A T-part y for x is
a causal neighborhood for x given by T, briefly y∈Cn(x), if there is no T-part y*
for x such that y is ∈-embeddable into y*. The causal neighborhoods for x will
also be called patterns in x. Finally, the local change is effected by a structural
operation G that works on unique causal neighborhoods. Having also given points
(ii) and (iii) a proper mathematical explication, the assembly of the next state has
to be determined.

The values of G are in general not exactly what we need in order to assemble
the next state, because the configurations may have to be expanded and that
involves the addition and coordination of new atoms. To address that issue we
introduce determined regions Dr(z,x) of a state z; they are ∈-isomorphic to G(y)
for some causal neighborhood y for x and must satisfy a technical condition on the
“newness” of atoms. More precisely, v ∈ Dr(z,x) if and only if v <∗ z and there
is a y ∈ Cn(x), such that G(y) ∼=y v and Sup(v)∩ Sup(x)⊆ Sup(y). The last
condition for Dr guarantees that new atoms in G(y) correspond to new atoms in
v, and that the new atoms in v are new for x. If one requires G to satisfy similarly
Sup(G(y))∩ Sup(x)⊆ Sup(y), then the condition G(y) ∼=y v can be strengthened
to G(y) ∼=x v. The new atoms are thus always taken from U\Sup(x).44 One final
definition: for given states z and x let A(z,x) stand for Sup(z)\Sup(x). Note that
the number of new atoms introduced by G is bounded, i.e., |A(G(y), Sup(x))| <
n for some natural number n (any x∈S and any causal neighborhood y for x).

So, how is the next state of a Turing computor assembled? By simple set
theoretic operations, namely, difference \ and union ∪. Recalling the boundedness
and locality conditions for computors we define that M = 〈S; T, G〉 is a Turing
Computor on S, where S is a structural class, T a finite set of stereotypes, and
G a structural operation on ∪ T, if and only if, for every x ∈ S there is a z ∈ S,
such that:

(L.0) (∃!y) y∈Cn(x),

(L.1) (∃!v∈ Dr(z,x)) v∼=xG(cn(x)),

(A.1) z = (x\ Cn(x)) ∪ Dr(z,x).

L stands for Locality and A for Assembly. (∃!y) is the existential quantifier ex-
pressing uniqueness. cn(x) denotes the sole causal neighborhood of x guaranteed
by L.0, i.e., every state is required by L.0 to contain exactly one pattern. This
pattern in state x yields a unique determined region of a possible next state z; that
is expressed by L.1. The state z is obtained according to the assembly condition
A.1. It is determined up to ∈-isomorphism over x. A computation by M is a
finite sequence of transition steps via G that is halted when the operation on a
state w yields w as the next state. This result, for input x, is denoted by M(x).

44This selection of atoms new for x has in a very weak sense a “global” aspect; as G is a
structural operation, the precise choice of the atoms does not matter.
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A function F is (Turing) computable if and only if there is a Turing computor M
whose computation results determine — under a suitable encoding and decoding
— the values of F for any of its arguments. After all these definitions one can use
a suitable set theoretic representation of Turing machines to establish one lemma,
namely, that Turing machines are Turing computors. (See section 5.4.)

In the next subsection, we will provide a characterization of computations by
machines that is as general and convincing as that of human computors. Gandy
laid the groundwork in his thought-provoking paper Church’s Thesis and Princi-
ples for Mechanisms — a rich and difficult, but unnecessarily and maddeningly
complex paper. The structure of Turing’s argument actually guided Gandy’s anal-
ysis; however, Gandy realized through conversations with J. C. Shepherdson that
the analysis “must take parallel working into account”. In a comprehensive survey
article published ten years after Gandy’s paper, Leslie Lamport and Nancy Lynch
argued that the theory of sequential computing “rests on fundamental concepts
of computability that are independent of any particular computational model”.
They emphasized that the “fundamental formal concepts underlying distributed
computing”, if there were any, had not yet been developed. “Nevertheless”, they
wrote, “one can make some informal observations that seem to be important”:

Underlying almost all models of concurrent systems is the assumption
that an execution consists of a set of discrete events, each affecting
only part of the system’s state. Events are grouped into processes,
each process being a more or less completely sequenced set of events
sharing some common locality in terms of what part of the state they
affect. For a collection of autonomous processes to act as a coherent
system, the processes must be synchronized. (p. 1166)

Gandy’s analysis of parallel computation is conceptually convincing and provides
a sharp mathematical form of the informal assumption(s) “underlying almost all
models of concurrent systems”. Gandy takes as the paradigmatic parallel compu-
tation, as I mentioned already, the evolution of the Game of Life or other cellular
automata.

5.2 Gandy machines

Gandy uses, as Turing did, a central thesis: any discrete mechanical device satis-
fying some informal restrictive conditions can be described as a particular kind of
dynamical system. Instead, I characterize a Gandy Machine axiomatically based
on the following informal idea: the machine has to recognize the causal neighbor-
hoods of a given state, act on them locally in parallel, and assemble the results
to obtain the next state, which should be unique up to ∈-isomorphism. In anal-
ogy to the definition of Turing computability, we call a function F computable in
parallel if and only if there is a Gandy machine M whose computation results
determine — under a suitable encoding and decoding — the values of F for any
of its arguments. What then is the underlying notion of parallel computation?
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Generalizing the above considerations for Turing computors, one notices quickly
complications, when new atoms are introduced in the images of causal neighbor-
hoods as well as in the next state: the different new atoms have to be “structurally
coordinated”. That can be achieved by a second local operation and a second set
of stereotypes. Causal neighborhoods of type 1 are parts of neighborhoods of type
2 and the overlapping determined regions of type 1 must be parts of determined
regions of type 2, so that they fit together appropriately. This generalization is
absolutely crucial to allow the machine to assemble the determined regions. Here
is the definition: M = 〈S; T1, G1, T2, G2〉 is a Gandy Machine on S, where S is
a structural class, Ti a finite set of stereotypes, Gi a structural operation on ∪Ti

(i = 1 or 2), if and only if for every x ∈ S there is a z ∈ S such that

(L.1) (∀y ∈ Cn1(x))(∃!v ∈ Dr1(z,x))v ∼=x G1(y);

(L.2) (∀y ∈ Cn2(x))(∃v ∈ Dr2(z,x))v ∼=x G2(y);

(A.1) (∀C)[C ⊆ Dr1(z,x))& ∩ { Sup(v) ∩ A(z,x)|v ∈ C} 6= ∅ →

(∃w ∈ Dr2(z,x))(∀v ∈ C)v <∗ w];

(A.2) z = ∪ Dr1(z,x).

The condition ∩{Sup(v) ∩ A(z,x)|v ∈ C} 6= ∅ in (A.1) expresses that the deter-
mined regions v in C have new atoms in common, i.e., they overlap. — It might
be helpful to the reader to look at section 5.4 and the description of the game of
life as a Gandy machine one finds there.

The restrictions for Gandy machines, as in the case of Turing computors,
amount to boundedness and locality conditions. They are justified directly by two
physical limitations, namely, a lower bound on the size of atomic components and
an upper bound on the speed of signal propagation. I have completed now all the
foundational work and can describe two important mathematical facts for Gandy
machines: (i) the state z following x is determined uniquely up to ∈-isomorphism
over x, and (ii) Turing machines can effect such transitions. The proof of the first
claim contains the combinatorial heart of matters and uses crucially the assem-
bly conditions. The proof of the second fact is rather direct. Only finitely many
finite objects are involved in the transition, and all the axiomatic conditions are
decidable. Thus, a search will allow us to find z. This can be understood as a
Representation Theorem: any particular Gandy machine is computationally equiv-
alent to a two-letter Turing machine, as Turing machines are also Gandy machines.
The first fact for Gandy machines, z is determined uniquely up to ∈-isomorphism
over x, follows from the next theorem.45 Before being able to formulate and prove

45In [Gandy, 1980] this uniqueness up to ∈-isomorphism over x is achieved in a much more
complex way, mainly, because parts of a state are proper subtrees, in general non-located. Given
an appropriate definition of cover, a collection C is called an assembly for x, if C is a cover for x

and the elements of C are maximal. The fact that C is an assembly for exactly one x, if indeed
it is, is expressed by saying that C uniquely assembles to x; see [Sieg and Byrnes, 1999a, 157].
In my setting, axiom (A.2) is equivalent to the claim that Dr1(z,x) uniquely assembles to z.
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it, we need to introduce one more concept. A collection C of parts for x is a cover
for x just in case x ⊆ ∪ C.

THEOREM. Let M be 〈S; T1, G1, T2, G2〉 as above and x ∈ S; if there are z and
z′ in S satisfying principles (L.1-2), (A.1), and if Dr1(z,x) and Dr1(z

′,x) cover z
and z′, then Dr1(z,x) ∼=x Dr1(z

′,x).

In the following Dr1, Dr′1, A, and A′ will abbreviate Dr1(z,x), Dr1(z
′,x), A(z,x),

and A(z′,x) respectively. Note that Dr1 and Dr′1 are finite. Using (L.1) and (L.2)
one can observe that there is a natural number m and there are sequences vi and
v′

i, i < m, such that Dr1 = {vi|i < m}, Dr′1 = {v′
i|i < m}, and v′

i is the unique
part of z′ with vi

∼=xv
′
i via permutations πi (for all i < m). Here is a picture of

the situation:

x y

z
vi G1(y)

z′

v′
i

To establish the Theorem, we have to find a single permutation π that extends to
an ∈-isomorphism over x for all vi and v′

i simultaneously. Such a π must obviously
satisfy for all i < m:

(i) vi
∼=x v′

i via π

and, consequently,

(ii) π[Sup(vi)]=Sup(v′
i).

As π is an ∈-isomorphism over x, we have:

(iii) π[A] = A′.

Condition (ii) implies for all i < m and all r ∈ A the equivalence between
r∈Sup(vi) and rπ ∈Sup(v′

i). This can also be expressed by

(ii*) µ(r)=µ′(rπ), for all r∈ A,
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where µ(r) = {i|r ∈ Sup(vi)} and µ′(r) = {i|r ∈ Sup(v′
i)}; these are the signatures

of r with respect to z and z′.
To obtain such a permutation, the considerations are roughly as follows: (i) if

the vi do not overlap, then the πi will do; (ii) if there is overlap, then an equivalence
relation ≈ (≈′) on A(A′) is defined by r1≈r2 iff µ(r1) = µ(r2), and analogously
for ≈′; (iii) then we prove that the “corresponding” equivalence classes [r]≈ and
[s]≈′ (the signatures of their elements are identical) have the same cardinality.
[r]≈ can be characterized as ∩{Sup(vi) ∩ A|i ∈ µ(r)}; similar for [s]≈′ . This
characterization is clearly independent of the choice of representative by the very
definition of the equivalence relation(s). With this in place, a global ∈-isomorphism
can be defined. These considerations are made precise through the proofs of the
combinatorial lemma and two corollaries in the next section.

5.3 Global assembly

All considerations in this section are carried out under the assumptions of the
Theorem: M = 〈S;T1,G1,T2,G2〉 is an arbitrary Gandy machine and x∈S an
arbitrary state; we assume furthermore that z and z′ are in S, the principles (L.1-
2) and (A.1) are satisfied, and that Dr1 and Dr′1 cover z and z′, because of (A.2).
We want to show that Dr1 ∼=xDr′1, knowing already that there are sequences vi

and v′
i of length m, such that Dr1 = {vi| i<m}, Dr′1 = {v′

i| i<m} and v′
i is the

unique part of z′ with vi
∼=xv

′
i via permutations πi (for all i<m). I start out with

the formulation of a key lemma concerning overlaps.

LEMMA. (Overlap Lemma.) Let r0 ∈ A and µ(r0) 6= ∅; then there is a
permutation ρ on U with vi

∼=x v′
i via ρ for all i ∈ µ(r0).

Proof. We have {vi|i ∈ µ(r0)} ⊆ Dr1; as r0 is in A and in Sup(vi) for each
i ∈ µ(r0) 6= ∅, we have also that ∩{Sup(vi)∩A|i ∈ µ(r0)} 6= ∅. The antecedent of
(A.1) is satisfied, and we conclude that there is a w ∈ Dr2 such that vi <

∗ w <∗ z,
for all i ∈ µ(r0). Using (L.2) we obtain a w′ ∈ Dr′2 with w ∼=x w′. This ∈-
isomorphism over x is induced by a permutation ρ and yields for all i ∈ µ(r0)

vρ
i <

∗ wρ = w′ <∗ z′.

So we have, vi
∼=x vρ

i and vρ
i <

∗ z′, thus — using (L.1) — vρ
i =v′

i; that holds for
all i ∈ µ(r0). �

Note that the condition µ(r)6= ∅ is satisfied in our considerations for any r∈A, as
Dr1is a cover of z; so we have for any such r an appropiate overlap permutation
ρr for r. The crucial combinatorial lemma we have to establish is this:

LEMMA. (Combinatorial Lemma.) For r0 ∈ A : |{r ∈ A|µ(r0) ⊆ µ(r)}| =
|{s ∈ A′|µ(r0) ⊆ µ′(s)}|.

Proof. Consider r0 ∈ A. I establish first the claim
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ρ[{r ∈ A|µ(r0) ⊆ µ(r)}] ⊆ {s ∈ A′|µ(r0) ⊆ µ′(s)},

where ρ is an overlap permutation for r0. The claim follows easily from

r ∈ A&µ(r0) ⊆ µ(r) → µ(r0) ⊆ µ′(rρ),

by observing that rρ is in A′. Assume, to establish this conditional indirectly, for
arbitrary r ∈ A that µ(r0) ⊆ µ(r) and ¬(µ(r0) ⊆ µ′(rρ)). The first assumption
implies that r ∈ Sup(vi) for all i ∈ µ(r0), and the construction of ρ yields then:

(♥) rρ∈ Sup(v′
i) for all i ∈ µ(r0).

The second assumption implies that there is a k in µ(r0)\µ
′(rρ). Obviously,

k ∈ µ(r0) and k /∈ µ′(rρ). The first conjunct k ∈ µ(r0) and (♥) imply that rρ ∈
Sup(v′

k); as the second conjunct k /∈ µ′(rρ) means that rρ /∈ Sup(v′

k), we have
obtained a contradiction.

Now I’ll show that ρ[{r ∈ A|µ(r0) ⊆ µ(r)}] cannot be a proper subset of {s ∈
A′|µ(r0) ⊆ µ′(s)}. Assume, to obtain a contradiction, that it is; then there is
s∗ ∈ A′ that satisfies µ(r0) ⊆ µ′(s∗) and is not a member of ρ[{r ∈ A|µ(r0) ⊆
µ(r)}]. As µ(r0) ⊆ µ′(s∗), s∗ is in Sup(v′

i) for all i ∈ µ(r0); the analogous fact
holds for all r ∈ A satisfying µ(r0) ⊆ µ(r), i.e., all such r must be in Sup(vi) for
all i ∈ µ(r0). As vi

∼=x v′
i via ρ for all i ∈ µ(r0), s∗ must be obtained as a ρ-image

of some r∗ in Sup(x) or in A (and, in the latter case, violating µ(r0) ⊆ µ(r∗)).
However, in either case we have a contradiction. The assertion of the Lemma is
now immediate. �

Next I establish two consequences of the Combinatorial Lemma, the second of
which is basic for the definition of the global isomorphism π.

COROLLARY 1. For any I ⊆ {0, 1, . . .,m− 1} with I ⊆ µ(r0) for some r0 in A,

|{r ∈ A|I ⊆ µ(r)}| = |{s ∈ A′|I ⊆ µ′(s)}|.

Proof. Consider an arbitrary I ⊆ µ(r0) for some r0 in A. If I = µ(r0), then the
claim follows directly from the Combinatorial Lemma. If I ⊂ µ(r0), let r0, . . ., rk−1

be elements r of A with I ⊂ µ(r) and require that µ(rj) 6= µ(rj′

), for all j, j′ < k
and j 6= j′, and for every r ∈ A with I ⊂ µ(r) there is a unique j < k with
µ(r) = µ(rj). The Combinatorial Lemma implies, for all j < k,

|{r ∈ A|µ(rj) ⊆ µ(r)}| = |{s ∈ A′|µ(rj) ⊆ µ′(s)}|.

Now it is easy to verify the claim of Corollary 1:

|{r ∈ A|I ⊆ µ(r)}| =
|{r ∈ A|(∃j < k)µ(rj) ⊆ µ(r)}| =
|{s ∈ A′|(∃j < k)µ(rj) ⊆ µ′(s)}| =
|{s ∈ A′|I ⊆ µ′(s)}|.

This completes the proof of Corollary 1. �
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The second important consequence of the Combinatorial Lemma can be obtained
now by an inductive argument.

COROLLARY 2. For any I ⊆ {0, 1, . . .,m− 1} with I ⊆ µ(r0) for some r0 in A.

|{r ∈ A|I = µ(r)}| = |{s ∈ A′|I = µ′(s)}|.

Proof. (By downward induction on |I|). Abbreviating |{r ∈ A|I = µ(r)}| by νI

and |{s ∈ A′|I = µ′(s)}| by ν′I , the argument is as follows:
Base case (|I| = m): In this case there are no proper extensions I∗ of I, and we
have

νI = |{r ∈ A|I = µ(r)}|
= |{r ∈ A|I ⊆ µ(r)}|, as there is no proper extension of I,
= |{s ∈ A′|I ⊆ µ′(s)}|, by Corollary 1,
= |{s ∈ A′|I = µ′(s)}|, again, as there is no proper extension,
= ν′I

Induction step (|I|) < m): Assume that the claim holds for all I∗ with n + 1 ≤
|I∗| ≤ m and show that it holds for I with |I| = n. Using the induction hypothesis
we have, summing up over all proper extensions I∗ of I:

(♣) ΣI∗νI∗ = ΣI∗ν′I∗ .

Now we argue as before:

νI = |{r ∈ A|I = µ(r)}|
= |{r ∈ A|I ⊆ µ(r)}| − ΣI∗νI∗

= |{s ∈ A′|I ⊆ µ′(s)}| − ΣI∗ν′I∗ , by Corollary 1 and (♣),
= |{s ∈ A′|I = µ′(s)}|
= ν′I

This completes the proof of Corollary 2. �

Finally, we can define an appropriate global permutation π. Given an atom r ∈ A,
there is an overlap permutations ρr, which can be restricted to

[r]≈ = ∩{Sup(vi)∩A|i ∈ µ(r)};

let ρ∗ denote this restriction. Because of Corollary 2, ρ∗ is a bijection between
[r]≈ and [ρ∗(r)]≈′ . The desired global permutation is now defined as follows for
any atom r ∈ ∪{Sup(vi)|i < m}:

π(r) =

{

ρ∗(r) if r ∈ ∩{Sup(vi)∩A| i∈ µ (r)}

r otherwise

π is a well-defined bijection with π[A] = A′ and µ(r) = µ′(rπ). It remains to
establish:
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Claim : For all i < m, vi
∼=x v′

i via π.
For the Proof consider an arbitrary i < m. By the basic set-up of our con-
siderations, we have πi(vi) = v′

i. If vi does not contain in its support an el-
ement of A, then π and πi coincide; if vi’s support contains an element of A
that is possibly even in an overlap, the argument proceeds as follows. Notice
first of all that all elements of [r]≈ are in Sup(vi) as soon as one r ∈ A is in
Sup(vi). Taking this into account, we have by definition of π and vi ↑ [r]≈:
π(vi ↑ [r]≈) = ρ∗(vi ↑ [r]≈).46 The definition of ρ∗ and the fact that ρr(vi) = v′

i al-
low us to infer that ρ∗(vi ↑ [r]≈) = v′

i ↑ [ρ∗(r)]≈′ . As µ′(ρ∗(r)) = µ′(πi(r))[= µ(r)]
we can extend this sequence of identities by v′

i ↑ [ρ∗(r)]≈′ = v′
i ↑ [πi(r)]≈′ . Con-

sequently, as πi(vi) = v′
i, we have v′

i ↑ [πi(r)]≈′ = πi(vi ↑ [r]≈).
These considerations hold for all r ∈Sup(vi)∩A; we can conclude π(vi) = πi(vi)
and, with πi(vi) = v′

i, we have π(vi) = v′
i.

This concludes, finally, the argument for the Theorem.

5.4 Models

There is a rich variety of models, as the game of life, other cellular automata and
many artificial neural nets are Gandy machines. Let me first sketch a set theoretic
presentation of a Turing machine as a Turing computor and then, even more briefly,
that of the Game of Life as a Gandy machine. Consider a Turing machine with
symbols s0, . . ., sk and internal states q0, . . ., qm; its program is given as a finite
list of quadruples of the form qisjckqm, expressing that the machine is going to
perform action ck and change into internal state qm, when scanning symbol sj in
state qi. The tape is identified with a set of overlapping pairs

Tp := {〈b, b〉, 〈b, c〉, . . ., 〈d, e〉, 〈e, e〉}

where b, c, . . ., d, e are distinct atoms; c is the leftmost square of the tape with
a possibly non-blank symbol on it, d its rightmost one. The symbols are rep-

resented by sj := {r}(j+1)
, 0 ≤ j ≤ k; the internal states are given by q

j
:=

{r}(k+1)+(j+1)
, 0 ≤ j ≤ l. The tape content is given by

Ct := {〈sj0
, c〉, . . ., 〈sjr

, d〉}

and, finally, the id is represented as the union of Tp, Ct, and {〈q
i
, r〉} with r

being a square of Tp. So the structural set S of states is obtained as the set of
all ids closed under ∈-isomorphisms. Stereotypes (for each program line given by
qisj) consist of parts like

{〈q
i
, r〉, 〈sj , r〉, 〈t, r〉, 〈r, u〉};

46↑ is the pruning operation; it applies to an element x of HF and a subset Y of its support:
x ↑ Y is the subtree of x that is built up exclusively from atoms in Y. The ∈-recursive definition
is: (x ∩ Y) ∪ [{y ↑ (Y ∩ Tc(y))|y ∈ x}\{Ø}]. Cf. [Sieg and Byrnes, 1999a, 155–6].



On Computability 597

these are the causal neighborhoods on which G operates. Consider the program
line qisjskql (print sk); applied to the above causal neighborhood G yields

{〈q
l
, r〉, 〈sk, r〉, 〈t, r〉, 〈r, u〉}.

For the program line qisjRql (move Right) two cases have to be distinguished. In
the first case, when r is not the rightmost square, G yields

{〈q
l
, u〉, 〈sj , r〉, 〈t, r〉, 〈r, u〉};

in the second case, when r is the rightmost square, G yields

{〈q
l
, ∗〉, 〈sj , r〉, 〈s0, ∗〉, 〈t, r〉, 〈r, ∗〉, 〈∗, u〉};

where ∗ is a new atom. The program line qisjLql (move Left) is treated similarly. It
is easy to verify that a Turing machine presented in this way is a Turing Computor.

Cellular automata introduced by Ulam and von Neumann operate in parallel;
a particular cellular automaton was made popular by Conway, the Game of Life.
A cellular automaton is made up of many identical cells. Typically, each cell is
located on a regular grid in the plane and carries one of two possible values. After
each time unit its values are updated according to a simple rule that depends on
its own previous value and the previous values of the neighboring cells. Cellular
automata of this sort can simulate universal Turing machines, but they also yield
discrete simulations of very general and complex physical processes.

Gandy considered playing Conway’s Game of Life as a paradigmatic case of
parallel computing. It is being played on subsets of the plane, more precisely,
subsets that are constituted by finitely many connected squares. For reasons that
will be obvious in a moment, the squares are also called internal cells; they can be
in two states, dead or alive. In my presentation the internal cells are surrounded
by one layer of border cells; the latter, in turn, by an additional layer of virtual
cells. Border and virtual cells are dead by convention. Internal cells and border
cells are jointly called real. The layering ensures that each real cell is surrounded
by a full set of eight neighboring cells. For real cells the game is played according
to the rules:

1. living cells with 0 or 1 (living) neighbor die (from isolation);

2. living cells with 4 or more (living) neighbors die (from overcrowding);

3. dead cells with exactly 3 (living) neighbors become alive.

4. In all other cases the cell’s state is unchanged.

A real cell a with neighbors a1, . . ., a8 and state s(a) is given by

{a, s(a), 〈a1, . . ., a8〉}.
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The neighbors are given in “canonical” order starting with the square in the left-
most top corner and proceeding clockwise; s(a) is {a} in case a is alive, otherwise
{{a}}. The T1-causal neighborhoods of real cells are of the form

{{a, s(a), 〈a1, . . ., a8〉}, {a1, s(a1)}, . . ., {a8, s(a8)}}.

It is obvious how to define the structural operation G1 on the causal neighborhoods
of internal cells; the case of border cells requires attention. There is a big number
of stereotypes that have to be treated, so I will discuss only one simple case
that should, nevertheless, bring out the principled considerations. In the following
diagram we start out with the cells that have letters assigned to them; the diagram
should be thought of extending at the left and at the bottom. The v’s indicate
virtual cells, the b’s border cells, the {a}’s internal cells that are alive, and the ∗’s
new atoms that are added in the next step of the computation. Let’s see how that
comes about.

∗0 ∗1 ∗2 ∗3 ∗4 ∗5 ∗6 ∗7

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

b0 b1 b2 b3 b4 b5 b6 b7 b8 v10

{a0} {a1} {a2} {a3} {a4} {a5} {a6} {a7} b9 v11

Consider the darkly shaded square b3 with its neighbors, i.e., its presentation

{b3, {{b3}}, 〈v2, . . ., b2〉};

applying G1 to its causal neighborhood yields

{{b3, {b3}, 〈v2, . . ., b2〉}, {v3, {{v3}}, 〈∗2, ∗3, ∗4, v4, b4, b3, b2, v2〉}},

where ∗2, ∗3, and ∗4 are new atoms (and v3 has been turned from a virtual cell
into a real one, namely a border cell). Here the second set of stereotypes and the
second structural operation come in to ensure that the new squares introduced
by applying G1 to “adjacent” border cells (whose neighborhoods overlap with the
neighborhood of b3) are properly identified in the next state. Consider as the
appropriate T2-causal neighborhood the set consisting of the T1-causal neighbor-
hoods of b2, b3, and b4; G2 applied to it yields the set with presentations of the
cells v2, v3, and v4.
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5.5 Tieferlegung

The above considerations constitute the mathematical core of this section. They
lead to the conclusion that computability, when relativized to a particular kind
of computing agent or device, has a perfectly standard methodological status: no
thesis is needed, but rather the recognition that the axiomatic characterization is
correct for the intended computing device. The recognition that the notions do not
go beyond Turing computability is then an important mathematical fact. It seems
to me that we have gained in Hilbert’s broad terms a deepening of the foundations
via the axiomatic method, a Tieferlegung der Fundamente. As I mentioned earlier,
Gödel advocated such an approach in a conversation with Church in early 1934 and
suggested “to state a set of axioms which would embody the generally accepted
properties of this notion (i.e., effective calculability), and to do something on that
basis.”

The sharpened version of Turing’s work and a thorough-going re-interpretation
of Gandy’s approach allow us to fill in the blanks of Gödel’s suggestion; this resolves
in my view the methodological issue raised at the end of section 4. Perhaps the
remarks in the 1964 Postscriptum to the Princeton Lectures of 1934 echo his
earlier considerations. “Turing’s work gives,” according to Gödel, “an analysis of
the concept of ‘mechanical procedure’. . . . This concept is shown to be equivalent
with that of a ‘Turing machine’.” The work, on which I reported, substantiates
these remarks in the following sense: it provides an axiomatic analysis of the
concept “mechanical procedure” and shows that this concept is computationally
equivalent to that of a Turing machine. Indeed, it does so for two such concepts,
namely, when the computing agents are computors or discrete machines; and it
does so by imposing constraints on the computations these agents carry out in
steps. The natural and well-motivated constraints guarantee the effectiveness of
the steps in the most direct way.

The axiomatic approach captures the essential nature of computation processes
in an abstract way. The difference between the two types of calculators I have
been describing is reduced to the fact that Turing computors modify one bounded
part of a state, whereas Gandy machines operate in parallel on arbitrarily many
bounded parts. The axiomatic conditions arise from underlying analyses that lead
to a particular structural view. Of course, an appeal to some informal understand-
ing can no more be avoided in this case than in any other case of an axiomatically
characterized mathematical structure intended to model broad aspects of physical
or intellectual reality. The general point is this: we don’t have to face anything
especially mysterious for the concept of calculability; rather, we have to face the
ordinary issues for the adequacy of mathematical concepts and they are, of course,
non-trivial.

I have been distinguishing in other writings two aspects of mathematical ex-
perience. The first, the quasi-constructive aspect, has to do with the recognition
of laws for accessible domains; this includes, in particular, our recognition of the
correctness of the Zermelo Fraenkel axioms in set theory and their extendibility by
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suitable axioms of infinity. The second, the conceptional aspect, deals with the un-
covering of abstract, axiomatically characterized notions. These abstract notions
are distilled from mathematical practice for the purpose of comprehending com-
plex connections, of making analogies precise and of obtaining a more profound
understanding. Bourbaki in their [1950] expressed matters quite in Dedekind and
Hilbert’s spirit, when claiming that the axiomatic method teaches us

to look for the deep-lying reasons for such a discovery [that two or
several quite distinct theories lend each other “unexpected support”],
to find the common ideas of these theories, . . . to bring these ideas
forward and to put them in their proper light. (p. 223)

Notions like group, field, topological space and differentiable manifold are ab-
stract in this sense. Turing’s analysis shows, when properly generalized, that com-
putability exemplifies the second aspect of mathematical experience. Although
Gödel used “abstract” in a more inclusive way than I do here his broad claim
is pertinent also for computability, namely, “that we understand abstract terms
more and more precisely as we go on using them, and that more and more abstract
terms enter the sphere of our understanding.” [1972, 306]

6 OUTLOOK ON MACHINES AND MIND

Turing’s notion of human computability is exactly right not only for obtaining
a negative solution of the Entscheidungsproblem that is conclusive, but also for
achieving a precise characterization of formal systems that is needed for the
general formulation of Gödel’s incompleteness theorems. I argued in sections 1
and 2 that the specific intellectual context reaches back to Leibniz and requires
us to focus attention on effective, indeed mechanical procedures; these procedures
are to be carried out by computors without invoking higher cognitive capacities.
The axioms of section 5.1 are intended for this informal concept. The question
whether there are strictly broader notions of effectiveness has of course been asked
for both cognitive and physical processes. I am going to address this question not
in any general and comprehensive way, but rather by focusing on one central issue:
the discussion might be viewed as a congenial dialogue between Gödel and Turing
on aspects of mathematical reasoning that transcend mechanical procedures.

I’ll start in section 6.1 by returning more fully to Gödel’s view on mechanical
computability as articulated in his [193?]. There he drew a dramatic conclusion
from the undecidability of certain Diophantine propositions, namely, that mathe-
maticians cannot be replaced by machines. That theme is taken up in the Gibbs
Lecture of 1951 where Gödel argues in greater detail that the human mind in-
finitely surpasses the powers of any finite machine; an analysis of the argument
is presented in section 6.2 under the heading Beyond calculation. Section 6.3 is
entitled Beyond discipline and gives Turing’s perspective on intelligent machinery;
it is devoted to the seemingly sharp conflict between Gödel’s and Turing’s views



On Computability 601

on mind. Their deeper disagreement really concerns the nature of machines, and
I’ll end with some brief remarks on (supra-) mechanical devices in section 6.4.

6.1 Mechanical computability

In section 4.2 I alluded briefly to the unpublished and untitled draft for a lecture
Gödel presumably never delivered; it was written in the late 1930s. Here one finds
the earliest extensive discussion of Turing and the reason why Gödel, at the time,
thought Turing had established “beyond any doubt” that “this really is the correct
definition of mechanical computability”. Obviously, we have to clarify what “this”
refers to, but first I want to give some of the surrounding context. Already in his
[1933] Gödel elucidated, as others had done before him, the mechanical feature of
effective procedures by pointing to the possibility that machines carry them out.
When insisting that the inference rules of precisely described proof methods have
to be “purely formal” he explains:

[The inference rules] refer only to the outward structure of the formu-
las, not to their meaning, so that they could be applied by someone
who knew nothing about mathematics, or by a machine. This has
the consequence that there can never be any doubt as to what cases
the rules of inference apply to, and thus the highest possible degree of
exactness is obtained. [Collected Works III, p. 45]

During the spring term of 1939 Gödel gave an introductory logic course at
Notre Dame. The logical decision problem is informally discussed and seen in
the historical context of Leibniz’s “Calculemus”.47 Before arguing that results of
modern logic prevent the realization of Leibniz’s project, Gödel asserts that the
rules of logic can be applied in a “purely mechanical” way and that it is therefore
possible “to construct a machine which would do the following thing”:

The supposed machine is to have a crank and whenever you turn the
crank once around the machine would write down a tautology of the
calculus of predicates and it would write down every existing tautology
. . . if you turn the crank sufficiently often. So this machine would
really replace thinking completely as far as deriving of formulas of the
calculus of predicates is concerned. It would be a thinking machine in
the literal sense of the word. For the calculus of propositions you can
do even more. You could construct a machine in form of a typewriter
such that if you type down a formula of the calculus of propositions
then the machine would ring a bell [if the formula is a tautology] and
if it is not it would not. You could do the same thing for the calculus
of monadic predicates.

47This is [Gödel 1939]. As to the character of these lectures, see [Dawson], p. 135.
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Having formulated these positive results Gödel points out that “it is impossible
to construct a machine which would do the same thing for the whole calculus
of predicates”. Drawing on the undecidability of predicate logic established by
Church and Turing, he continues with a striking claim:

So here already one can prove that Leibnitzens [sic!] program of the
“calculemus” cannot be carried through, i.e. one knows that the hu-
man mind will never be able to be replaced by a machine already for
this comparatively simple question to decide whether a formula is a
tautology or not.

I mention these matters to indicate the fascination Gödel had with the mechanical
realization of logical procedures, but also his penchant for overly dramatic formu-
lations concerning the human mind. He takes obviously for granted here that a
mathematically satisfactory definition of mechanical procedures has been given.

Such a definition, Gödel insists in [193?, 166], is provided by the work of Her-
brand, Church and Turing. In that manuscript he examines the relation between
mechanical computability, general recursiveness and machine computability. This
is of special interest, as we will see that his methodological perspective here is
quite different from his later standpoint. He gives, on pp. 167–8, a perspicuous
presentation of the equational calculus that is “essentially Herbrand’s” and defines
general recursive functions. He claims outright that it provides “the correct defi-
nition of a computable function”. Then he asserts, “That this really is the correct
definition of mechanical computability was established beyond any doubt by Tur-
ing.” Here the referent for “this” has finally been revealed: it is the definition of
general recursive functions. How did Turing establish that this is also the correct
definition of mechanical computability? Gödel’s answer is as follows:

He [Turing] has shown that the computable functions defined in this
way [via the equational calculus] are exactly those for which you can
construct a machine with a finite number of parts which will do the
following thing. If you write down any number n1, . . . , nr on a slip of
paper and put the slip of paper into the machine and turn the crank,
then after a finite number of turns the machine will stop and the value
of the function for the argument n1, . . . , nr will be printed on the paper.
[Collected Works III, p. 168]

The implicit claim is clearly that a procedure is mechanical just in case it is
executable by a machine with a finite number of parts. There is no indication of
the structure of such machines except for the insistence that they have only finitely
many parts, whereas Turing machines are of course potentially infinite due to the
expanding tape.

The literal reading of the argument for the claim “this really is the correct
definition of mechanical computability was established beyond any doubt by Tur-
ing” amounts to this. The equational calculus characterizes the computations
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of number-theoretic functions and provides thus “the correct definition of com-
putable function”. That the class of computable functions is co-extensional with
that of mechanically computable ones is then guaranteed by “Turing’s proof” of
the equivalence between general recursiveness and machine computability.48 Con-
sequently, the definition of general recursive functions via the equational calculus
characterizes correctly the mechanically computable functions. Without any ex-
plicit reason for the first step in this argument, it can only be viewed as a direct
appeal to Church’s Thesis.

If we go beyond the literal reading and think through the argument in parallel
to Turing’s analysis in his [1936], then we can interpret matters as follows. Turing
considers arithmetic calculations done by a computor. He argues that they involve
only very elementary processes; these processes can be carried out by a Turing
machine operating on strings of symbols. Gödel, this interpretation maintains,
also considers arithmetic calculations done by a computor; these calculations can
be reduced to computations in the equational calculus. This first step is taken in
parallel by Gödel and Turing and is based on a conceptual analysis; cf. the next
paragraph. The second step connects calculations of a computor to computations
of a Turing machine. This connection is established by mathematical arguments:
Turing simply states that machines operating on finite strings can be proved to be
equivalent to machines operating on individual symbols, i.e., to ordinary Turing
machines; Gödel appeals to “Turing’s proof” of the fact that general recursiveness
and machine computability are equivalent.

Notice that in Gödel’s way of thinking about matters at this juncture, the math-
ematical theorem stating the equivalence of general recursiveness and machine
computability plays the pivotal role: It is not Turing’s analysis that is appealed
to by Gödel but rather “Turing’s proof”. The central analytic claim my interpre-
tation attributes to Gödel is hardly argued for. On p. 13 Gödel just asserts, “. . .
by analyzing in which manner this calculation [of the values of a general recursive
function] proceeds you will find that it makes use only of the two following rules.”
The two rules as formulated here allow substituting numerals for variables and
equals for equals. So, in some sense, Gödel seems to think that the rules of the
equational calculus provide a way of “canonically” representing steps in calcula-
tions and, in addition, that his characterization of recursion is the most general
one.49 The latter is imposed by the requirement that function values have to be
calculated, as pointed out in [1934, 369 top]; the former is emphasized much later
in a letter to van Heijenoort of April 23, 1963, where Gödel distinguishes his def-
inition from Herbrand’s. His definition, Gödel asserts, brought out clearly what
Herbrand had failed to see, namely “that the computation (for all computable
functions) proceeds by exactly the same rules“. [Collected Works V, p. 308] By

48In Turing’s [1936] general recursive functions are not mentioned. Turing established in
an Appendix to his paper the equivalence of his notion with λ-definability. As Church and
Kleene had already proved the equivalence of λ-definability and general recursiveness, “Turing’s
Theorem” is thus established for Turing computability.

49This is obviously in contrast to the view he had in 1934 when defining general recursive
functions; cf. section 3.2.
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contrast, Turing shifts from arithmetically meaningful steps to symbolic processes
that underlie them and can be taken to satisfy restrictive boundedness as well as
locality conditions. These conditions cannot be imposed directly on arithmetic
steps and are certainly not satisfied by computations in the equational calculus.
So, we are back precisely at the point of the discussion in section 3.

6.2 Beyond calculation

In [193?] Gödel begins the discussion by reference to Hilbert’s “famous words”
that “for any precisely formulated mathematical question a unique answer can be
found”. He takes these words to mean that for any mathematical proposition A
there is a proof of either A or not-A, “where by ‘proof’ is meant something which
starts from evident axioms and proceeds by evident inferences”. He argues that
the incompleteness theorems show that something is lost when one takes the step
from this notion of proof to a formalized one: “. . . it is not possible to formalise
mathematical evidence even in the domain of number theory, but the conviction
about which Hilbert speaks remains entirely untouched. Another way of putting
the result is this: it is not possible to mechanise mathematical reasoning; . . . ”
Then he continues, in a way that is similar to the striking remark in the Notre
Dame Lectures, “i.e., it will never be possible to replace the mathematician by a
machine, even if you confine yourself to number-theoretic problems.” (pp. 164–5)

The succinct argument for this conclusion is refined in the Gibbs Lecture of
1951. In the second and longer part of the lecture, Gödel gave the most sustained
defense of his Platonist standpoint drawing the “philosophical implications” of
the situation presented by the incompleteness theorems.50 “Of course,” he says
polemically, “in consequence of the undeveloped state of philosophy in our days,
you must not expect these inferences to be drawn with mathematical rigor.” The
mathematical aspect of the situation, he claims, can be described rigorously; it is
formulated as a disjunction, “Either mathematics is incompletable in this sense,
that its evident axioms can never be comprised in a finite rule, that is to say, the
human mind (even within the realm of pure mathematics) infinitely surpasses the
powers of any finite machine, or else there exist absolutely unsolvable Diophantine
problems of the type specified . . . ” Gödel insists that this fact is both “mathe-
matically established” and of “great philosophical interest”. He presents on pages
11–13 an argument for the disjunction and considers its conclusion as “inevitable”.

The disjunction is called in footnote 15 a theorem that holds for finitists and
intuitionists as an implication. Here is the appropriate implication: If the evi-
dent axioms of mathematics can be comprised in a finite rule, then there exist
absolutely unsolvable Diophantine problems. Let us establish this implication by
adapting Gödel’s considerations for the disjunctive conclusion; the argument is

50That standpoint is formulated at the very end of the lecture as follows: p. 38 (CW III,
322/3): “Thereby [i.e., the Platonistic view] I mean the view that mathematics describes a non-
sensual reality, which exists independently both of the acts and [[of]] the dispositions of the
human mind and is only perceived, and probably perceived very incompletely, by the human
mind.”
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brief. Assume the axioms that are evident for the human mind can be comprised
in a finite rule “that is to say”, for Gödel, a Turing machine can list them. Thus
there exists a mechanical rule producing all the evident axioms for “subjective”
mathematics, which is by definition the system of all humanly demonstrable math-
ematical propositions.51 On pain of contradiction with the second incompleteness
theorem, the human mind cannot prove the consistency of subjective mathemat-
ics. (This step is of course justified only if the inferential apparatus for subjective
mathematics is given by a mechanical rule, and if subjective mathematics satisfies
all the other conditions for the applicability of the second theorem.) Consequently,
the Diophantine problem corresponding to the consistency statement cannot be
proved either in subjective mathematics. That justifies Gödel’s broader claim that
it is undecidable “not just within some particular axiomatic system, but by any
mathematical proof the human mind can conceive”. (p. 13) In this sense the
problem is absolutely undecidable for the human mind. So it seems that we have
established the implication. However, the very first step in this argument, indi-
cated by “that is to say”, appeals to the precise concept of “finite procedure” as
analyzed by Turing. Why is “that is to say” justified for Gödel? — To answer
this question, I examine Gödel’s earlier remarks about finite procedures and finite
machines.52

Gödel stresses in the first paragraph of the Gibbs Lecture that the incomplete-
ness theorems have taken on “a much more satisfactory form than they had had
originally”. The greatest improvement was made possible, he underlines, “through
the precise definition of the concept of finite procedure, which plays a decisive role
in these results”. Though there are a number of different ways of arriving at such a
definition which all lead to “exactly the same concept”, the most satisfactory way
is that taken by Turing when “reducing the concept of a finite procedure to that
of a machine with a finite number of parts”. Gödel does not indicate the character
of, or an argument for, the reduction of finite procedures to procedures effected
by a machine with a finite number of parts, but he states explicitly that he takes
finite machine “in the precise sense” of a Turing machine. (p. 9) This reduction is
pivotal for establishing the central implication rigorously, and it is thus crucial to
understand and grasp its mathematical character. How else can we assent to the
claim that the implication has been established mathematically as a theorem? In
his [1964] Gödel expressed matters quite differently (and we discussed that later
Gödelian perspective extensively in section 4): there he asserts that Turing in
[1936] gave an analysis of mechanical procedures and showed that the analyzed

51This is in contrast to the case of “objective” mathematics, the system of all true mathematical
propositions, for which one cannot have a “well-defined system of correct axioms” (given by a
finite rule) that comprises all of it. In [Wang, 1974, 324–6], Gödel’s position on these issues is
(uncritically) discussed. The disjunction is presented as one of “two most interesting rigorously
proved results about minds and machines” and is formulated as follows: “Either the human mind
surpasses all machines (to be more precise: it can decide more number theoretic questions than
any machine) or else there exist number theoretical questions undecidable for the human mind.”

52Boolos’ Introductory Note to the Gibbs Lecture, in particular section 3, gives a different
perspective on difficulties in the argument.
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concept is equivalent to that of a Turing machine. The claimed equivalence is
viewed as central for obtaining “a precise and unquestionably adequate definition
of the general concept of formal system” and for supporting, I would like to add in
the current context, the mathematical cogency of the argument for the implication.

Gödel neither proved the mathematical conclusiveness of the reduction nor the
correctness of the equivalence. So let us assume, for the sake of the argument, that
the implication has been mathematically established and see what conclusions
of great philosophical interest can be drawn. There is, as a first background
assumption, Gödel’s deeply rationalist and optimistic perspective that denies the
consequent of the implication. That perspective, shared with Hilbert as we saw in
section 6.1, was articulated in [193?], and it was still taken in the early 1970s. Wang
reports in [1974, 324–5], that Gödel agreed with Hilbert in rejecting the possibility
that there are number-theoretic problems undecidable for the human mind. Our
task is then to follow the path of Gödel’s reflections on the first alternative of his
disjunction or the negated antecedent of our implication. That assertion states:
There is no finite machine (i.e. no Turing machine) that lists all the axioms of
mathematics which are evident to the human mind. Gödel argues for two related
conclusions: i) the working of the human mind is not reducible to operations of
the brain, and ii) the human mind infinitely surpasses the powers of any finite
machine.53

A second background assumption is introduced to obtain the first conclusion:
The brain, “to all appearances”, is “a finite machine with a finite number of parts,
namely, the neurons and their connections”. (p. 15) As finite machines are taken
to be Turing machines, brains are consequently also considered as Turing machines.
That is reiterated in [Wang, 1974, 326], where Gödel views it as very likely that
“The brain functions basically like a digital computer.” Together with the above
assertion this allows Gödel to conclude in the Gibbs Lecture, “the working of the
human mind cannot be reduced to the working of the brain”.54 In [Wang] it
is taken to be in conflict with the commonly accepted view, “There is no mind
separate from matter.” That view is for Gödel a “prejudice of our time, which
will be disproved scientifically (perhaps by the fact that there aren’t enough nerve
cells to perform the observable operations of the mind)”. Gödel uses the notion
of a finite machine in an extremely general way when considering the brain as a
finite machine with a finite number of parts. It is here that the identification of
finite machines with Turing machines becomes evidently problematic: Is it at all
plausible to think that the brain has a similarly fixed structure and fixed program
as a particular Turing machine? The argumentation is problematic also on different
grounds; namely, Gödel takes “human mind” in a more general way than just the

53This does not follow just from the fact that for every Turing machine that lists evident
axioms there is another axiom evident to the human mind not included in the list. Turing
had tried already in his 1939 paper, Ordinal Logics, to overcome the incompleteness results by
strengthening theories systematically. He added consistency statements (or reflection principles)
and iterated this step along constructive ordinals; Feferman perfected that line of investigation,
cf. his [1988]. Such a procedure was also envisioned in [Gödel, 1946, 1–2].

54Cf. also note 13 of the Gibbs Lecture and the remark on p. 17.
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mind of any one individual human being. Why should it be then that mind is
realized through any particular brain?

The proposition that the working of the human mind cannot be reduced to the
working of the brain is thus not obtained as a “direct” consequence of the incom-
pleteness theorems, but requires additional substantive assumptions: i) there are
no Diophantine problems the human mind cannot solve, ii) brains are finite ma-
chines with finitely many parts, and iii) finite machines with finitely many parts
are Turing machines. None of these assumptions is uncontroversial; what seems
not to be controversial, however, is Gödel’s more open formulation in [193?] that it
is not possible to mechanize mathematical reasoning. That raises immediately the
question, what aspects of mathematical reasoning or experience defy formaliza-
tion? In his note [1974] that was published in [Wang, 325–6], Gödel points to two
“vaguely defined” processes that may lead to systematic and effective, but non-
mechanical procedures, namely, the process of defining recursive well-orderings
of integers for larger and larger ordinals of the second number class and that of
formulating stronger and stronger axioms of infinity. The point was reiterated in
a modified formulation [Gödel, 1972.3] that was published only later in Collected
Works II, p. 306. The [1972.3] formulation of this note is preceded by [1972.2],
where Gödel gives Another version of the first undecidability theorem that involves
number theoretic problems of Goldbach type. This version of the theorem may be
taken, Gödel states, “as an indication for the existence of mathematical yes or no
questions undecidable for the human mind”. (p. 305) However, he points to a fact
that “weighs against this interpretation”, namely, that “there do exist unexplored
series of axioms which are analytic in the sense that they only explicate the con-
cepts occurring in them”. As an example he points also here to axioms of infinity,
“which only explicate the content of the general concept of set”. (p. 306) If the
existence of such effective, non-mechanical procedures is taken as a fact or, more
cautiously, as a third background assumption, then Gödel’s second conclusion is
established: The human mind, indeed, infinitely surpasses the power of any finite
machine.

Though Gödel calls the existence of an “unexplored series” of axioms of infinity
a fact, he also views it as a “vaguely defined” procedure and emphasizes that it
requires further mathematical experience; after all, its formulation can be given
only once set theory has been developed “to a considerable extent”. In the note
[1972.3] Gödel suggests that the process of forming stronger and stronger axioms of
infinity does not yet form a “well-defined procedure which could actually be carried
out (and would yield a non-recursive number-theoretic function)”: it would require
“a substantial advance in our understanding of the basic concepts of mathematics”.
In the note [1974], Gödel offers a prima facie startlingly different reason for not
yet having a precise definition of such a procedure: it “would require a substantial
deepening of our understanding of the basic operations of the mind”. (p. 325)

Gödel’s Remarks before the Princeton bicentennial conference in 1946 throw
some light on this seeming tension. Gödel discusses there not only the role axioms
of infinity might play in possibly obtaining an absolute concept of demonstrabil-
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ity, but he also explores the possibility of an absolute mathematical “definition of
definability”. What is most interesting for our considerations here is the fact that
he considers a restricted concept of human definability that would reflect a human
capacity, namely, “comprehensibility by our mind”. That concept should satisfy,
he thinks, the “postulate of denumerability” and in particular allow us to define
(in this particular sense) only countably many sets. “For it has some plausibility
that all things conceivable by us are denumerable, even if you disregard the ques-
tion of expressibility in some language.” (p. 3) That requirement, together with
the related difficulty of the definability of the least indefinable ordinal, does not
make such a concept of definability “impossible, but only [means] that it would
involve some extramathematical element concerning the psychology of the being
who deals with mathematics.” Obviously, Turing brought to bear on his definition
of computability, most fruitfully, an extramathematical feature of the psychology
of a human computor.55 Gödel viewed that definition in [1946], the reader may
recall, as the first “absolute definition of an interesting epistemological notion”.
(p. 1) His reflections on the possibility of absolute definitions of demonstrability
and definability were encouraged by the success in the case of computability. Can
we obtain by a detailed study of actual mathematical experience a deeper “under-
standing of the basic operations of the mind” and thus make also a “substantial
advance in our understanding of the basic concepts of mathematics”?

6.3 Beyond discipline

Gödel’s brief exploration in [1972.3] of the issue of defining a non-mechanical, but
effective procedure is preceded by a severe critique of Turing. The critical attitude
is indicated already by the descriptive and harshly judging title of the note, A
philosophical error in Turing’s work. The discussion of Church’s thesis and Tur-
ing’s analysis is in general fraught with controversy and misunderstanding, and the
controversy begins often with a dispute over what the intended informal concept
is. When Gödel spotted a philosophical error in Turing’s work, he assumed that
Turing’s argument in the 1936 paper was to show that “mental procedures cannot
go beyond mechanical procedures”. He considered the argument as inconclusive:

What Turing disregards completely is the fact that mind, in its use, is
not static, but constantly developing, i.e., that we understand abstract
terms more and more precisely as we go on using them, and that more
and more abstract terms enter the sphere of our understanding. [Col-
lected Works II, p. 306]

Turing did not give a conclusive argument for Gödel’s claim, but then it has to
be added that he did not intend to argue for it. Simply carrying out a mechanical
procedure does not, indeed, should not involve an expansion of our understanding.
Turing viewed the restricted use of mind in computations undoubtedly as static;

55Cf. Parsons’ informative remarks in the Introductory Note to [Gödel, 1946, 148].
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after all, it seems that this feature contributed to the good reasons for replacing
states of mind of the human computor by “more definite physical counterparts”
in section 9, part III, of his classical paper.

Even in his work of the late 1940s and early 1950s that deals explicitly with
mental processes, Turing does not argue that mental procedures cannot go beyond
mechanical procedures. Mechanical processes are, as a matter of fact, still made
precise as Turing machine computations; machines that might exhibit intelligence
have, in contrast, a more complex structure than Turing machines. Conceptual
idealization and empirical adequacy are now being sought for quite different pur-
poses, and Turing is trying to capture clearly what Gödel found missing in his
analysis for a broader concept of humanly effective calculability, namely, “. . . that
mind, in its use, is not static, but constantly developing”.56 Gödel continued the
above remark in this way:

There may exist systematic methods of actualizing this development,
which could form part of the procedure. Therefore, although at each
stage the number and precision of the abstract terms at our disposal
may be finite, both (and, therefore, also Turing’s number of distin-
guishable states of mind) may converge toward infinity in the course of
the application of the procedure.

The particular procedure mentioned as a plausible candidate for satisfying this
description is the process of forming stronger and stronger axioms of infinity. We
saw that the two notes, [1972-3] and [1974], are very closely connected. However,
there is one subtle and yet substantive difference. In [1974] the claim that the
number of possible states of mind may converge to infinity is obtained as a con-
sequence of the dynamic development of mind. That claim is then followed by a
remark that begins, in a superficially similar way, as the first sentence in the above
quotation:

Now there may exist systematic methods of accelerating, specializing,
and uniquely determining this development, e.g. by asking the right
questions on the basis of a mechanical procedure.

56[Gödel, 1972.3] may be viewed, Gödel mentions, as a note to the word “mathematics” in the
sentence, “Note that the results mentioned in this postscript do not establish any bounds of the
powers of human reason, but rather for the potentialities of pure formalism in mathematics.”
This sentence appears in the 1964 Postscriptum to the Princeton Lectures Gödel gave in 1934;
Collected Works I, pp. 369–371. He states in that Postscriptum also that there may be “finite
non-mechanical procedures” and emphasizes, as he does in many other contexts, that such pro-
cedures would “involve the use of abstract terms on the basis of their meaning”. (Note 36 on
p. 370 of Collected Works I ) Other contexts are found in volume III of the Collected Works,
for example, the Gibbs Lecture (p. 318 and note 27 on that very page) and a related passage in
“Is mathematics syntax of language?” (p. 344 and note 24) These are systematically connected
to Gödel’s reflections surrounding (the translation of) his Dialectica paper [1958] and [1972]. A
thorough discussion of these issues cannot be given here; but as to my perspective on the basic
difficulties, see the discussion in section 4 of my paper “Beyond Hilbert’s Reach?”.
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Clearly, I don’t have a full understanding of these enigmatic observations, but
there are three aspects that are clear enough. First, mathematical experience has
to be invoked when asking the right questions; second, aspects of that experience
may be codified in a mechanical procedure and serve as the basis for the right
questions; third, the answers may involve abstract terms that are incorporated
into the non-mechanical mental procedure.

We should not dismiss or disregard Gödel’s methodological remark that “asking
the right questions on the basis of a mechanical procedure” may be part of a
systematic method to push forward the development of mind. It allows us, even
on the basis of a very limited understanding, to relate Gödel’s reflections tenuously
with Turing’s proposal for investigating matters. Prima facie their perspectives
are radically different, as Gödel proceeds by philosophical argument and broad,
speculative appeal to mathematical experience, whereas Turing suggests attacking
the problem largely by computational experimentation. That standard view of the
situation is quite incomplete. In his paper Intelligent machinery written about
ten years after [1939], Turing states what is really the central problem of cognitive
psychology:

If the untrained infant’s mind is to become an intelligent one, it must
acquire both discipline and initiative. So far we have been considering
only discipline [via the universal machine, W.S.]. . . . But discipline
is certainly not enough in itself to produce intelligence. That which
is required in addition we call initiative. This statement will have to
serve as a definition. Our task is to discover the nature of this residue
as it occurs in man, and to try and copy it in machines. (p. 21)

How can we transcend discipline? A hint is provided in Turing’s 1939 paper, where
he distinguishes between ingenuity and intuition. He observes that in formal logics
their respective roles take on a greater definiteness. Intuition is used for “setting
down formal rules for inferences which are always intuitively valid”, whereas in-
genuity is to “determine which steps are the more profitable for the purpose of
proving a particular proposition”. He notes:

In pre-Gödel times it was thought by some that it would be possible to
carry this programme to such a point that all the intuitive judgements
of mathematics could be replaced by a finite number of these rules.
The necessity for intuition would then be entirely eliminated. (p. 209)

The distinction between ingenuity and intuition, but also the explicit link of in-
tuition to incompleteness, provides an entry to exploit through concrete compu-
tational work the “parallelism” of Turing’s and Gödel’s considerations. Copying
the residue in machines is the task at hand. It is extremely difficult in the case
of mathematical thinking, and Gödel would argue it is an impossible one, if ma-
chines are Turing machines. Turing would agree. Before we can start copying, we
have to discover at least partially the nature of the residue, with an emphasis on
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“partially”, through some restricted proposals for finding proofs in mathematics.
Let us look briefly at the broad setting.

Proofs in a formal logic can be obtained uniformly by a patient search through
an enumeration of all theorems, but additional intuitive steps remain necessary
because of the incompleteness theorems. Turing suggested particular intuitive
steps in his ordinal logics; his arguments are theoretical, but connect directly to
the discussion of actual or projected computing devices that appears in his Lecture
to London Mathematical Society and in Intelligent Machinery. In these papers he
calls for intellectual searches (i.e., heuristically guided searches) and initiative (that
includes, in the context of mathematics, proposing new intuitive steps). However,
he emphasizes [1947, 122]:

As regards mathematical philosophy, since the machines will be doing
more and more mathematics themselves, the centre of gravity of the
human interest will be driven further and further into philosophical
questions of what can in principle be done etc.

Gödel and Turing, it seems, could have cooperated on the philosophical questions
of what can in principle be done. They also could have agreed, so to speak ter-
minologically, that there is a human mind whose working is not reducible to the
working of any particular brain. Towards the end of Intelligent Machinery Tur-
ing emphasizes, “the isolated man does not develop any intellectual power”, and
argues:

It is necessary for him to be immersed in an environment of other men,
whose techniques he absorbs during the first twenty years of his life.
He may then perhaps do a little research of his own and make a very
few discoveries which are passed on to other men. From this point of
view the search for new techniques must be regarded as carried out by
the human community as a whole, rather than by individuals.

Turing calls this, appropriately enough, a cultural search and contrasts it with
more limited, intellectual searches. Such searches, Turing says definitionally, can
be carried out by individual brains. In the case of mathematics they would include
searches through all proofs and would be at the center of “research into intelligence
of machinery”. Turing had high expectations for machines’ progress in mathemat-
ics; indeed, he was unreasonably optimistic about their emerging capacities. Even
now it is a real difficulty to have machines do mathematics on their own: work
on Gödel’s “theoretical” questions has to be complemented by sustained efforts
to meet Turing’s “practical” challenge. I take this to be one of the ultimate mo-
tivations for having machines find proofs in mathematics, i.e., proofs that reflect
logical as well as mathematical understanding.

When focusing on proof search in mathematics it may be possible to use and
expand logical work, but also draw on experience of actual mathematical practice.
I distinguish two important features of the latter: i) the refined conceptual orga-
nization internal to a given part of mathematics, and ii) the introduction of new
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abstract concepts that cut across different areas of mathematics.57 Logical for-
mality per se does not facilitate the finding of arguments from given assumptions
to a particular conclusion. However, strategic considerations can be formulated
(for natural deduction calculi) and help to bridge the gap between assumptions
and conclusion, suggesting at least a very rough structure of arguments. These
logical structures depend solely on the syntactic form of assumptions and conclu-
sion; they provide a seemingly modest, but in fact very important starting-point
for strategies that promote automated proof search in mathematics.

Here is a pregnant general statement that appeals primarily to the first feature
of mathematical practice mentioned above: Proofs provide explanations of what
they prove by putting their conclusion in a context that shows them to be correct.58

The deductive organization of parts of mathematics is the classical methodology
for specifying such contexts. “Leading mathematical ideas” have to be found,
proofs have to be planned: I take this to be the axiomatic method turned dy-
namic and local.59 This requires undoubtedly the introduction of heuristics that
reflect a deep understanding of the underlying mathematical subject matter. The
broad and operationally significant claim is, that we have succeeded in isolat-
ing the leading ideas for a part of mathematics, if that part can be developed
by machine — automatically, efficiently, and in a way that is furthermore easily
accessible to human mathematicians.60 This feature can undoubtedly serve as a
springboard for the second feature I mentioned earlier, one that is so characteristic
of the developments in modern mathematics, beginning in the second half of the
19th century: the introduction of abstract notions that do not have an intended
interpretation, but rather are applicable in many different contexts. (Cf. section
5.5.) The above general statement concerning mathematical explanation can now
be directly extended to incorporate also the second feature of actual mathematical
experience. Turing might ask, whether machines can be educated to make such
reflective moves on their own.

It remains a deep challenge to understand better the very nature of reason-
ing. A marvelous place to start is mathematics; where else do we find such a
rich body of systematically and rigorously organized knowledge that is structured
for intelligibility and discovery? The appropriate logical framework should un-
doubtedly include a structure theory of (mathematical) proofs. Such an extension
of mathematical logic and in particular of proof theory interacts directly with a

57That is, it seems to me, still far removed from the introduction of “abstract terms” in Gödel’s
discussions. They are also, if not mainly, concerned with the introduction of new mathematical
objects. Cf. note 10.

58That is a classical observation; just recall the dual experiences of Hobbes and Newton with
the Pythagorean Theorem, when reading Book 1 of Euclid’s Elements.

59Saunders MacLane articulated such a perspective and pursued matters to a certain extent
in his Göttingen dissertation. See his papers [1935] and [1979].

60To mention one example: in an abstract setting, where representability and derivability
conditions, but also instances of the diagonal lemma are taken for granted as axioms, Gödel’s
proofs can be found fully automatically; see [Sieg and Field]. The leading ideas used to extend
the basic logical strategies are very natural; they allow moving between object and meta-theoretic
considerations via provability elimination and introduction rules.
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sophisticated automated search for humanly intelligible proofs. How far can this
be pushed? What kind of broader leading ideas will emerge? What deeper under-
standing of basic operations of the mind will be gained? — We’ll hopefully find out
and, thus, uncover with strategic ingenuity part of Turing’s residue and capture
also part of what Gödel considered as “humanly effective”, but not mechanical —
“by asking the right questions on the basis of a mechanical procedure”.

6.4 (Supra-) Mechanical devices

Turing machines codify directly the most basic operations of a human computor
and can be realized as physical devices, up to a point. Gödel took for granted that
finite machines just are (computationally equivalent to) Turing machines. Simi-
larly, Church claimed that Turing machines are obtained by natural restrictions
from machines occupying a finite space and with working parts of finite size; he
viewed the restrictions “of such a nature as obviously to cause no loss of general-
ity”. (Cf. section 4.5.) In contrast to Gödel and Church, Gandy did not take this
equivalence for granted and certainly not as being supported by Turing’s analysis.
He characterized machines informally as discrete mechanical devices that can carry
out massively parallel operations. Mathematically Gandy machines are discrete
dynamical systems satisfying boundedness and locality conditions that are physi-
cally motivated; they are provably not more powerful than Turing machines. (Cf.
section 5.2.) Clearly one may ask: Are there plausible broader concepts of com-
putations for physical systems? If there are systems that carry out supra-Turing
processes they cannot satisfy the physical restrictions motivating the bounded-
ness and locality conditions for Gandy machines. I.e., such systems must violate
either the upper bound on signal propagation or the lower bound on the size of
distinguishable atomic components.61

In Paper machines, Mundici and I diagnosed matters concerning physical pro-
cesses in the following way. Every mathematical model of physical processes comes
with at least two problems, “How accurately does the model capture physical re-
ality, and how efficiently can the model be used to make predictions?” What is
distinctive about modern developments is the fact that, on the one hand, com-
puter simulations have led to an emphasis on algorithmic aspects of scientific laws
and, on the other hand, physical systems are being considered as computational
devices that process information much as computers do. It seems, ironically, that
the mathematical inquiry into paper machines has led to the point where (effective)
mathematical descriptions of nature and (natural) computations for mathematical
problems coincide.

61For a general and informative discussion concerning “hypercomputation”, see Martin Davis’s
paper [2004]. A specific case of “computations” beyond the Turing limit is presented through
Siegelmann’s ANNs (artificial neural nets): they perform hypercomputations only if arbitrary
reals are admitted as weights. Finally, there is the complex case of quantum computations; if I
understand matters correctly, they allow a significant speed-up for example in Shore’s algorithm,
but the current versions don’t go beyond the Turing limit.
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How could we have physical processes that allow supra-Turing computations?
If harnessed in a machine, we would have a genuinely supra-mechanical device.
However, we want to be able to effectively determine mathematical states from
other such states — that “parallel” physical states, i.e., we want to make predic-
tions and do that in a sharply intersubjective way. If that would not be the case,
why would we want to call such a physical process a computation and not just an
oracle? Wouldn’t that undermine the radical intersubjectivity computations were
to insure? There are many fascinating open issues concerning mental and physical
processes that may or may not have adequate computational models. They are
empirical, broadly conceptual, mathematical and, indeed, richly interdisciplinary.
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[Gödel, 1946] K. Gödel. Remarks before the Princeton bicentennial conference on problems in

mathematics. In Collected Works II, 150–153, 1946.
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[Gödel, 1995] K. Gödel. Collected Works III. Oxford University Press, 1995.
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zu seinem fünfzigjährigen Doctorjubiläum gewidmet. Fues, Leipzig, 271–74, 1887. (Translation
in [Ewald, 1996].)
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Pure and Applied Logic, 133: 319–338, 2005.

[Sieg and Parsons, 1995] W. Sieg and C. D. Parsons. Introductory Note to [Gödel, 1938]. In
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